Compressed Sensing and its Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317822" target="_blank" >RIV/00216208:11320/15:10317822 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-16042-9" target="_blank" >http://dx.doi.org/10.1007/978-3-319-16042-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-16042-9" target="_blank" >10.1007/978-3-319-16042-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compressed Sensing and its Applications
Popis výsledku v původním jazyce
Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technologies", invited leading researchers on applications of compressed sensing from mathematics, computer science, and engineering to the "MATHEON Workshop 2013: Compressed Sensing and its Applications"" in December 2013. It was the first workshop specifically focusing on the applications of compressed se
Název v anglickém jazyce
Compressed Sensing and its Applications
Popis výsledku anglicky
Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technologies", invited leading researchers on applications of compressed sensing from mathematics, computer science, and engineering to the "MATHEON Workshop 2013: Compressed Sensing and its Applications"" in December 2013. It was the first workshop specifically focusing on the applications of compressed se
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1203" target="_blank" >LL1203: Vlastnosti funkcí a zobrazení v Sobolevových prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů