The Role of Exciton Delocalization in the Major Photosynthetic Light-Harvesting Antenna of Plants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318061" target="_blank" >RIV/00216208:11320/15:10318061 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.bpj.2015.01.019" target="_blank" >http://dx.doi.org/10.1016/j.bpj.2015.01.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bpj.2015.01.019" target="_blank" >10.1016/j.bpj.2015.01.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Role of Exciton Delocalization in the Major Photosynthetic Light-Harvesting Antenna of Plants
Popis výsledku v původním jazyce
In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611 and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions o
Název v anglickém jazyce
The Role of Exciton Delocalization in the Major Photosynthetic Light-Harvesting Antenna of Plants
Popis výsledku anglicky
In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611 and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BO - Biofyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-25752S" target="_blank" >GA14-25752S: Mikroskopické enviromentální determinanty a samoregulace přenosu energie ve fotosyntéze</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biophysical Journal
ISSN
0006-3495
e-ISSN
—
Svazek periodika
108
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1047-1056
Kód UT WoS článku
000350969000007
EID výsledku v databázi Scopus
2-s2.0-84924769492