Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318376" target="_blank" >RIV/00216208:11320/15:10318376 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1063/1.4931474" target="_blank" >http://dx.doi.org/10.1063/1.4931474</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4931474" target="_blank" >10.1063/1.4931474</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties

  • Popis výsledku v původním jazyce

    The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t) log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties)and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law

  • Název v anglickém jazyce

    Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties

  • Popis výsledku anglicky

    The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t) log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties)and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

  • Svazek periodika

    143

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000361843900022

  • EID výsledku v databázi Scopus

    2-s2.0-84942627400