The e-mobility case study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318565" target="_blank" >RIV/00216208:11320/15:10318565 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-16310-9_17" target="_blank" >http://dx.doi.org/10.1007/978-3-319-16310-9_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-16310-9_17" target="_blank" >10.1007/978-3-319-16310-9_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The e-mobility case study
Popis výsledku v původním jazyce
Electro-mobility (e-mobility) is one of the promising technologies being considered by automotive OEMs as an alternative to internal combustion engines as a means of propulsion. The e-mobility case study provides a novel example of a relevant industry application with in the ASCENS framework. An overview of the system design is given which describes how e-mobility is conceptualized and then transformed using the ensemble development life cycle (EDLC) approach into a distributed autonomic (i.e self-aware, self-adaptive) component-based software system.The system requirements engineering is based on the state-of-the affairs (SOTA) approach and the invariant refinement method (IRM)which are both revisited and applied. Regarding the implementation and deployment of the system, a dependable emergent ensembles of components(DEECo) approach is utilized. The DEECo components and ensembles are coded and deployed using the Java-based jDEECo runtime environment. The runtime environment integrates the multi-agent transport simulation tool (MATSim), which is used to predict the effects of the physical interactions of users, vehicles and infrastructure resources.jDEECo handles multiple MATSim instances to allow for different belief states between components and ensembles.
Název v anglickém jazyce
The e-mobility case study
Popis výsledku anglicky
Electro-mobility (e-mobility) is one of the promising technologies being considered by automotive OEMs as an alternative to internal combustion engines as a means of propulsion. The e-mobility case study provides a novel example of a relevant industry application with in the ASCENS framework. An overview of the system design is given which describes how e-mobility is conceptualized and then transformed using the ensemble development life cycle (EDLC) approach into a distributed autonomic (i.e self-aware, self-adaptive) component-based software system.The system requirements engineering is based on the state-of-the affairs (SOTA) approach and the invariant refinement method (IRM)which are both revisited and applied. Regarding the implementation and deployment of the system, a dependable emergent ensembles of components(DEECo) approach is utilized. The DEECo components and ensembles are coded and deployed using the Java-based jDEECo runtime environment. The runtime environment integrates the multi-agent transport simulation tool (MATSim), which is used to predict the effects of the physical interactions of users, vehicles and infrastructure resources.jDEECo handles multiple MATSim instances to allow for different belief states between components and ensembles.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E12045" target="_blank" >7E12045: Autonomic Service-Component Ensembles</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Software Engineering for Collective Autonomic Systems
ISBN
978-3-319-16309-3
Počet stran výsledku
21
Strana od-do
513-533
Počet stran knihy
533
Název nakladatele
Springer Verlag
Místo vydání
Cham
Kód UT WoS kapitoly
—