Yet more planning efficiency: Finite-domain state-variable reformulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10319126" target="_blank" >RIV/00216208:11320/15:10319126 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/0952813X.2014.993504" target="_blank" >http://dx.doi.org/10.1080/0952813X.2014.993504</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/0952813X.2014.993504" target="_blank" >10.1080/0952813X.2014.993504</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Yet more planning efficiency: Finite-domain state-variable reformulation
Popis výsledku v původním jazyce
AI Planning is inherently hard and hence it is desirable to derive as much information as we can from the structure of the planning problem and let this information be exploited by a planner. Many recent planners use the finite-domain state-variable representation of the problem instead of the classical propositional representation. However, most planning problems are still specified in the propositional representation due to the widespread modelling language planning domain definition language and it is hard to generate an efficient state-variable representation from the propositional model. In this article, we investigate various methods for automated generation of efficient state-variable representations from the propositional representation and wepropose a novel approach - constructed as a combination of existing techniques - that utilises the structural information from the goal and the initial state. We perform an exhaustive experimental evaluation of methods, planning systems a
Název v anglickém jazyce
Yet more planning efficiency: Finite-domain state-variable reformulation
Popis výsledku anglicky
AI Planning is inherently hard and hence it is desirable to derive as much information as we can from the structure of the planning problem and let this information be exploited by a planner. Many recent planners use the finite-domain state-variable representation of the problem instead of the classical propositional representation. However, most planning problems are still specified in the propositional representation due to the widespread modelling language planning domain definition language and it is hard to generate an efficient state-variable representation from the propositional model. In this article, we investigate various methods for automated generation of efficient state-variable representations from the propositional representation and wepropose a novel approach - constructed as a combination of existing techniques - that utilises the structural information from the goal and the initial state. We perform an exhaustive experimental evaluation of methods, planning systems a
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-19877S" target="_blank" >GA15-19877S: Automatické modelování znalostí a plánů pro autonomní roboty</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Experimental and Theoretical Artificial Intelligence
ISSN
0952-813X
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
34
Strana od-do
543-576
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84940580966