Classification of fMRI data using Dynamic Time Warping based functional connectivity analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10324421" target="_blank" >RIV/00216208:11320/16:10324421 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7760247/" target="_blank" >http://ieeexplore.ieee.org/document/7760247/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EUSIPCO.2016.7760247" target="_blank" >10.1109/EUSIPCO.2016.7760247</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of fMRI data using Dynamic Time Warping based functional connectivity analysis
Popis výsledku v původním jazyce
The synchronized spontaneous low frequency fluctuations of the BOLD signal, as captured by functional MRI measurements, is known to represent the functional connections of different brain areas. The aforementioned MRI measurements result in high-dimensional time series, the dimensions of which correspond to the activity of different brain regions. Recently we have shown that Dynamic Time Warping (DTW) distance can be used as a similarity measure between BOLD signals of brain regions [1] as an alternative of the traditionally used correlation coefficient. We have characterized the new metric's stability in multiple measurements, and between subjects in homogenous groups. In this paper we investigated the DTW metric's sensitivity and demonstrated that DTW-based models outperform correlation-based models in resting-state fMRI data classification tasks. Additionally, we show that functional connectivity networks resulting from DTW-based models as compared to the correlation-based models are more stable and sensitive to differences between healthy subjects and patient groups.
Název v anglickém jazyce
Classification of fMRI data using Dynamic Time Warping based functional connectivity analysis
Popis výsledku anglicky
The synchronized spontaneous low frequency fluctuations of the BOLD signal, as captured by functional MRI measurements, is known to represent the functional connections of different brain areas. The aforementioned MRI measurements result in high-dimensional time series, the dimensions of which correspond to the activity of different brain regions. Recently we have shown that Dynamic Time Warping (DTW) distance can be used as a similarity measure between BOLD signals of brain regions [1] as an alternative of the traditionally used correlation coefficient. We have characterized the new metric's stability in multiple measurements, and between subjects in homogenous groups. In this paper we investigated the DTW metric's sensitivity and demonstrated that DTW-based models outperform correlation-based models in resting-state fMRI data classification tasks. Additionally, we show that functional connectivity networks resulting from DTW-based models as compared to the correlation-based models are more stable and sensitive to differences between healthy subjects and patient groups.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
24th European Signal Processing Conference, EUSIPCO 2016
ISBN
978-0-9928626-5-7
ISSN
2219-5491
e-ISSN
—
Počet stran výsledku
5
Strana od-do
245-249
Název nakladatele
IEEE
Místo vydání
NEW YORK, NY 10017 USA
Místo konání akce
Budapest, Hungary
Datum konání akce
29. 8. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000391891900049