Using Bayesian Modeling on Molecular Fragments Features for Virtual Screening
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10326707" target="_blank" >RIV/00216208:11320/16:10326707 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CIBCB.2016.7758111" target="_blank" >http://dx.doi.org/10.1109/CIBCB.2016.7758111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CIBCB.2016.7758111" target="_blank" >10.1109/CIBCB.2016.7758111</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Bayesian Modeling on Molecular Fragments Features for Virtual Screening
Popis výsledku v původním jazyce
Virtual screening enables to search large small-molecule compound libraries for active molecules with respect to given macromolecular target. In ligand-based virtual screening, this goal is achieved by utilizing information about fragments or patterns present in existing known active compounds. Typically, the patterns are encoded as fingerprints which are used to screen a database of candidate compounds. In this work, we introduce an approach which uses Bayesian inference to encode activity-related information. Unlike previous approaches, our method does not utilize simple fragments, but rather uses features of these fragments. For each molecule, we generate a set of molecular fragments and extract molecular features for each of them. Next, we remove correlated features and use the remaining ones to build a Bayes model of activity. To score a previously unseen molecule, the molecule's fragment feature vectors are passed to the model and a score is obtained as the aggregation of their probability scores. When screening a database, this score is used to rank the compounds database. We show on datasets with various levels of difficulty that using fragments features rather then fragments themselves results in improvement of retrieval rates with respect to the best state-of-the art molecular fingerprints.
Název v anglickém jazyce
Using Bayesian Modeling on Molecular Fragments Features for Virtual Screening
Popis výsledku anglicky
Virtual screening enables to search large small-molecule compound libraries for active molecules with respect to given macromolecular target. In ligand-based virtual screening, this goal is achieved by utilizing information about fragments or patterns present in existing known active compounds. Typically, the patterns are encoded as fingerprints which are used to screen a database of candidate compounds. In this work, we introduce an approach which uses Bayesian inference to encode activity-related information. Unlike previous approaches, our method does not utilize simple fragments, but rather uses features of these fragments. For each molecule, we generate a set of molecular fragments and extract molecular features for each of them. Next, we remove correlated features and use the remaining ones to build a Bayes model of activity. To score a previously unseen molecule, the molecule's fragment feature vectors are passed to the model and a score is obtained as the aggregation of their probability scores. When screening a database, this score is used to rank the compounds database. We show on datasets with various levels of difficulty that using fragments features rather then fragments themselves results in improvement of retrieval rates with respect to the best state-of-the art molecular fingerprints.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP14-29032P" target="_blank" >GP14-29032P: Efektivní explorace chemického prostoru s využitím vícekriteriální optimalizace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
ISBN
978-1-4673-9472-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Neuveden
Místo konání akce
Chiang Mai, Thailand
Datum konání akce
5. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—