User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331991" target="_blank" >RIV/00216208:11320/16:10331991 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ins.2016.01.014" target="_blank" >http://dx.doi.org/10.1016/j.ins.2016.01.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2016.01.014" target="_blank" >10.1016/j.ins.2016.01.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks
Popis výsledku v původním jazyce
In this paper we propose a procedure consisting of a first collection phase of social network messages, a subsequent user query selection, and finally a clustering phase, defined by extending the density-based DBSCAN algorithm, for performing a geographic and temporal exploration of a collection of items, in order to reveal and map their latent spatio-temporal structure. Specifically, both several geo-temporal distance measures and a density-based geo-temporal clustering algorithm are proposed. The approach can be applied to social messages containing an explicit geographic and temporal location. The algorithm usage is exemplified to identify geographic regions where many geotagged Twitter messages about an event of interest have been created, possibly in the same time period in the case of non-periodic events (aperiodic events), or at regular timestamps in the case of periodic events. This allows discovering the spatio-temporal periodic and aperiodic characteristics of events occurring in specific geographic areas, and thus increasing the awareness of decision makers who are in charge of territorial planning. Several case studies are used to illustrate the proposed procedure.
Název v anglickém jazyce
User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks
Popis výsledku anglicky
In this paper we propose a procedure consisting of a first collection phase of social network messages, a subsequent user query selection, and finally a clustering phase, defined by extending the density-based DBSCAN algorithm, for performing a geographic and temporal exploration of a collection of items, in order to reveal and map their latent spatio-temporal structure. Specifically, both several geo-temporal distance measures and a density-based geo-temporal clustering algorithm are proposed. The approach can be applied to social messages containing an explicit geographic and temporal location. The algorithm usage is exemplified to identify geographic regions where many geotagged Twitter messages about an event of interest have been created, possibly in the same time period in the case of non-periodic events (aperiodic events), or at regular timestamps in the case of periodic events. This allows discovering the spatio-temporal periodic and aperiodic characteristics of events occurring in specific geographic areas, and thus increasing the awareness of decision makers who are in charge of territorial planning. Several case studies are used to illustrate the proposed procedure.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
340-341
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
122-143
Kód UT WoS článku
000371551900008
EID výsledku v databázi Scopus
2-s2.0-84957863065