Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Component-Based Design of Cyber-Physical Applications with Safety-Critical Requirements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332008" target="_blank" >RIV/00216208:11320/16:10332008 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.micpro.2016.01.007" target="_blank" >http://dx.doi.org/10.1016/j.micpro.2016.01.007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.micpro.2016.01.007" target="_blank" >10.1016/j.micpro.2016.01.007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Component-Based Design of Cyber-Physical Applications with Safety-Critical Requirements

  • Popis výsledku v původním jazyce

    Cyber-physical systems typically involve large numbers of mobile autonomous devices that closely interact with each other and their environment. Standard design and development techniques often fail to effectively manage the complexity and dynamics of such systems. As a result, there is a strong need for new programing models and abstractions. Towards this, component-based design methods are a promising solution. However, existing such approaches either do not accurately model transitory interactions between components - which are typical of cyber-physical systems - or do not provide guarantees for real-time behavior which is essential in safety-critical applications. To overcome this problem, we present a component-based design technique based on DEECo (Dependable Emergent Ensembles of Components). The DEECo framework allows modeling large-scale dynamic systems by a set of interacting components and, in contrast to approaches from the literature, it provides mechanisms to describe transitory interactions between them. To allow reasoning about timing behavior at the component-description level, we characterize DEECo's closed-loop delay in the worst case, i.e., the maximum time needed to react to a change in the environment. Based on this, we incorporate real-time analysis into DEECo's design flow. This further allows us to analyze the system's robustness under unreliable communication and to design decentralized safety-preserving mechanisms. To illustrate the simplicity and usefulness of our approach, we present a case study consisting of an intelligent crossroad system.

  • Název v anglickém jazyce

    Component-Based Design of Cyber-Physical Applications with Safety-Critical Requirements

  • Popis výsledku anglicky

    Cyber-physical systems typically involve large numbers of mobile autonomous devices that closely interact with each other and their environment. Standard design and development techniques often fail to effectively manage the complexity and dynamics of such systems. As a result, there is a strong need for new programing models and abstractions. Towards this, component-based design methods are a promising solution. However, existing such approaches either do not accurately model transitory interactions between components - which are typical of cyber-physical systems - or do not provide guarantees for real-time behavior which is essential in safety-critical applications. To overcome this problem, we present a component-based design technique based on DEECo (Dependable Emergent Ensembles of Components). The DEECo framework allows modeling large-scale dynamic systems by a set of interacting components and, in contrast to approaches from the literature, it provides mechanisms to describe transitory interactions between them. To allow reasoning about timing behavior at the component-description level, we characterize DEECo's closed-loop delay in the worst case, i.e., the maximum time needed to react to a change in the environment. Based on this, we incorporate real-time analysis into DEECo's design flow. This further allows us to analyze the system's robustness under unreliable communication and to design decentralized safety-preserving mechanisms. To illustrate the simplicity and usefulness of our approach, we present a case study consisting of an intelligent crossroad system.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LD15051" target="_blank" >LD15051: Chytré kyber-fyzikální systémy realizované pomocí ansámblů autonomních softwarových komponent</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Microprocessors and Microsystems

  • ISSN

    0141-9331

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    70-86

  • Kód UT WoS článku

    000375336900006

  • EID výsledku v databázi Scopus

    2-s2.0-84962802431