Fitness landscape analysis of hyper-heuristic transforms for the vertex cover problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333621" target="_blank" >RIV/00216208:11320/16:10333621 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-1649/179.pdf" target="_blank" >http://ceur-ws.org/Vol-1649/179.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fitness landscape analysis of hyper-heuristic transforms for the vertex cover problem
Popis výsledku v původním jazyce
Hyper-heuristics have recently proved efficient in several areas of combinatorial search and optimiza- tion, especially scheduling. The basic idea of hyper- heuristics is based on searching for search-strategy. In- stead of traversing the solution-space, the hyper-heuristic traverses the space of algorithms to find or construct an algorithm best suited for the given problem instance. The observed efficiency of hyper-heuristics is not yet fully ex- plained on the theoretical level. The leading hypothesis suggests that the fitness landscape of the algorithm-space is more favorable to local search techniques than the orig- inal space. In this paper, we analyse properties of fitness landscapes of the problem of minimal vertex cover. We focus on prop- erties that are related to efficiency of metaheuristics such as locality and fitness-distance correlation. We compare properties of the original space and the algorithm space trying to verify the hypothesis explaining hyper-heuristics performance. Our analysis shows that the hyper-heuristic- space really has some more favorable properties than the original space.
Název v anglickém jazyce
Fitness landscape analysis of hyper-heuristic transforms for the vertex cover problem
Popis výsledku anglicky
Hyper-heuristics have recently proved efficient in several areas of combinatorial search and optimiza- tion, especially scheduling. The basic idea of hyper- heuristics is based on searching for search-strategy. In- stead of traversing the solution-space, the hyper-heuristic traverses the space of algorithms to find or construct an algorithm best suited for the given problem instance. The observed efficiency of hyper-heuristics is not yet fully ex- plained on the theoretical level. The leading hypothesis suggests that the fitness landscape of the algorithm-space is more favorable to local search techniques than the orig- inal space. In this paper, we analyse properties of fitness landscapes of the problem of minimal vertex cover. We focus on prop- erties that are related to efficiency of metaheuristics such as locality and fitness-distance correlation. We compare properties of the original space and the algorithm space trying to verify the hypothesis explaining hyper-heuristics performance. Our analysis shows that the hyper-heuristic- space really has some more favorable properties than the original space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th ITAT Conference Information Technologies - Applications and Theory
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
179-186
Název nakladatele
CEUR-WS
Místo vydání
Neuveden
Místo konání akce
Tatranské Matliare, Slovakia
Datum konání akce
15. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—