Multiscale Investigation of Oxygen Vacancies in TiO2 Anatase and Their Role in Memristor's Behavior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333766" target="_blank" >RIV/00216208:11320/16:10333766 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jpcc.6b07196" target="_blank" >http://dx.doi.org/10.1021/acs.jpcc.6b07196</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.6b07196" target="_blank" >10.1021/acs.jpcc.6b07196</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiscale Investigation of Oxygen Vacancies in TiO2 Anatase and Their Role in Memristor's Behavior
Popis výsledku v původním jazyce
The structure, energetics, and transport properties of TiO2 anatase with different densities of oxygen vacancies are studied by computer simulations using a variety of techniques, ranging from first-principles. to Monte Carlo methods, to span different time scales. This work is motivated, by the recent development of memristive electronic devices, usually made of Metal oxides in which arrays of defects control the resistance switching mechanism. Anatase, in particular,,emerged as one of the most promising candidates for memristor design. However, the microscopic behavior of these miiltivacancy systems is not yet entirely understood. In this regard, electronic and transport properties of TiO2 anatase containing neutral and charged oxygen vacancies are investigated within density functional theory (DFT) by adding a Hubbard-like term to the generalized gradient approximation of the electron density,(GGA+U). Calculated observables are the formation energy of oxygen defects, the cohesion :energy of multivacancy systems, and the energy profiles of oxygen diffusion pathways, computed through the nudged-elastic band (NEB) approach. Furthermore, a, kinetic Monte Carlo model (KMC) of the conductive Channel formation in bulk anatase, based on the Corresponding - diffusion rates, is discussed. Finally, to demonstrate the relation between energetically stable structures and the conductive phase of memristors, we study electron transport within a tight binding approximation to DFT, using the nonequilibrium Green's function (NEGF) formalism.
Název v anglickém jazyce
Multiscale Investigation of Oxygen Vacancies in TiO2 Anatase and Their Role in Memristor's Behavior
Popis výsledku anglicky
The structure, energetics, and transport properties of TiO2 anatase with different densities of oxygen vacancies are studied by computer simulations using a variety of techniques, ranging from first-principles. to Monte Carlo methods, to span different time scales. This work is motivated, by the recent development of memristive electronic devices, usually made of Metal oxides in which arrays of defects control the resistance switching mechanism. Anatase, in particular,,emerged as one of the most promising candidates for memristor design. However, the microscopic behavior of these miiltivacancy systems is not yet entirely understood. In this regard, electronic and transport properties of TiO2 anatase containing neutral and charged oxygen vacancies are investigated within density functional theory (DFT) by adding a Hubbard-like term to the generalized gradient approximation of the electron density,(GGA+U). Calculated observables are the formation energy of oxygen defects, the cohesion :energy of multivacancy systems, and the energy profiles of oxygen diffusion pathways, computed through the nudged-elastic band (NEB) approach. Furthermore, a, kinetic Monte Carlo model (KMC) of the conductive Channel formation in bulk anatase, based on the Corresponding - diffusion rates, is discussed. Finally, to demonstrate the relation between energetically stable structures and the conductive phase of memristors, we study electron transport within a tight binding approximation to DFT, using the nonequilibrium Green's function (NEGF) formalism.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
120
Číslo periodika v rámci svazku
38
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
22045-22053
Kód UT WoS článku
000384626800104
EID výsledku v databázi Scopus
2-s2.0-84989323144