Mechanical stress and stress release channels in 10-350 nm palladium hydrogen thin films with different micro-structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334722" target="_blank" >RIV/00216208:11320/16:10334722 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.actamat.2016.05.023" target="_blank" >http://dx.doi.org/10.1016/j.actamat.2016.05.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2016.05.023" target="_blank" >10.1016/j.actamat.2016.05.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanical stress and stress release channels in 10-350 nm palladium hydrogen thin films with different micro-structures
Popis výsledku v původním jazyce
For thin metal films adhered to rigid substrates hydrogen uptake results in compressive stresses in the GPa range. Stresses affect the thermodynamics as well as the durability of thin films, but many films can release stress above critical stress values. Depending on the films' thickness, microstructure and adhesion to the substrate, which determine the energy available in the nano-sized system, stress release is conducted via different release mechanisms. To evaluate the different mechanisms, Palladium thin films ranging from 10 nm to 350 nm and with three different types of microstructures (nanocrystalline, multi oriented epitaxy and three-fold epitaxy) are studied with special focus on the mechanical stress. In-situ substrate curvature measurements, XRD stress analyses and acoustic emission (AE) measurements are conducted to determine intrinsic stresses, hydrogen-induced stress changes and stress release signals. By this complementary experimental approach, different stress release mechanisms (named channels) are identified. Discrete stress relaxation (DSR) events are found already within the overall linear elastic stress-strain regime. Energies to stimulate DSR5 lay well below the formation energy of dislocations, and may allow the movement of defects pre-existing in the films. For higher strain energies, all studied films can release stress by the formation of new dislocations and plastic deformation. When the adhesion to the substrate is small, an alternative release channel of film buckling opens for thick films.
Název v anglickém jazyce
Mechanical stress and stress release channels in 10-350 nm palladium hydrogen thin films with different micro-structures
Popis výsledku anglicky
For thin metal films adhered to rigid substrates hydrogen uptake results in compressive stresses in the GPa range. Stresses affect the thermodynamics as well as the durability of thin films, but many films can release stress above critical stress values. Depending on the films' thickness, microstructure and adhesion to the substrate, which determine the energy available in the nano-sized system, stress release is conducted via different release mechanisms. To evaluate the different mechanisms, Palladium thin films ranging from 10 nm to 350 nm and with three different types of microstructures (nanocrystalline, multi oriented epitaxy and three-fold epitaxy) are studied with special focus on the mechanical stress. In-situ substrate curvature measurements, XRD stress analyses and acoustic emission (AE) measurements are conducted to determine intrinsic stresses, hydrogen-induced stress changes and stress release signals. By this complementary experimental approach, different stress release mechanisms (named channels) are identified. Discrete stress relaxation (DSR) events are found already within the overall linear elastic stress-strain regime. Energies to stimulate DSR5 lay well below the formation energy of dislocations, and may allow the movement of defects pre-existing in the films. For higher strain energies, all studied films can release stress by the formation of new dislocations and plastic deformation. When the adhesion to the substrate is small, an alternative release channel of film buckling opens for thick films.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP108%2F12%2FG043" target="_blank" >GBP108/12/G043: Mikro- a nanokrystalické materiály s vysokým podílem rozhraní pro moderní strukturní aplikace, biodegradabilní implantáty a uchovávání vodíku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Svazek periodika
114
Číslo periodika v rámci svazku
-
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
116-125
Kód UT WoS článku
000378962600012
EID výsledku v databázi Scopus
2-s2.0-84969497980