Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360925" target="_blank" >RIV/00216208:11320/17:10360925 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0925231217308111" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231217308111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2017.04.055" target="_blank" >10.1016/j.neucom.2017.04.055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression
Popis výsledku v původním jazyce
Computational prediction of drug-target interactions is an essential task with various applications in the pharmaceutical industry, such as adverse effect prediction or drug repositioning. Recently, expert systems based on machine learning have been applied to drug-target interaction prediction. Although hubness-aware machine learning techniques are among the most promising approaches, their potential to enhance drug-target interaction prediction methods has not been exploited yet. In this paper, we extend the Bipartite Local Model (BLM), one of the most prominent interaction prediction methods. In particular, we use BLM with a hubness-aware regression technique, ECkNN. We represent drugs and targets in the similarity space with rich set of features (i.e., chemical, genomic and interaction features), and build a projection-based ensemble of BLMs. In order to assist reproducibility of our work as well as comparison to published results, we perform experiments on widely used publicly available drug-target interaction datasets. The results show that our approach outperforms state-of-the-art drug-target prediction techniques. Additionally, we demonstrate the feasibility of predictions from the point of view of applications.
Název v anglickém jazyce
Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression
Popis výsledku anglicky
Computational prediction of drug-target interactions is an essential task with various applications in the pharmaceutical industry, such as adverse effect prediction or drug repositioning. Recently, expert systems based on machine learning have been applied to drug-target interaction prediction. Although hubness-aware machine learning techniques are among the most promising approaches, their potential to enhance drug-target interaction prediction methods has not been exploited yet. In this paper, we extend the Bipartite Local Model (BLM), one of the most prominent interaction prediction methods. In particular, we use BLM with a hubness-aware regression technique, ECkNN. We represent drugs and targets in the similarity space with rich set of features (i.e., chemical, genomic and interaction features), and build a projection-based ensemble of BLMs. In order to assist reproducibility of our work as well as comparison to published results, we perform experiments on widely used publicly available drug-target interaction datasets. The results show that our approach outperforms state-of-the-art drug-target prediction techniques. Additionally, we demonstrate the feasibility of predictions from the point of view of applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
—
Svazek periodika
260
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
284-293
Kód UT WoS článku
000405536900030
EID výsledku v databázi Scopus
2-s2.0-85019889766