Speeding up publication of Linked Data using data chunking in LinkedPipes ETL
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363612" target="_blank" >RIV/00216208:11320/17:10363612 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-69459-7_10" target="_blank" >https://doi.org/10.1007/978-3-319-69459-7_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-69459-7_10" target="_blank" >10.1007/978-3-319-69459-7_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speeding up publication of Linked Data using data chunking in LinkedPipes ETL
Popis výsledku v původním jazyce
There is a multitude of tools for preparation of Linked Data from data sources such as CSV and XML files. These tools usually perform as expected when processing examples, or smaller real world data. However, a majority of these tools become hard to use when faced with a larger dataset such as hundreds of megabytes large CSV file. Tools which load the entire resulting RDF dataset into memory usually have memory requirements unsatisfiable by commodity hardware. This is the case of RDF-based ETL tools. Their limits can be avoided by running them on powerful and expensive hardware, which is, however, not an option for majority of data publishers. Tools which process the data in a streamed way tend to have limited transformation options. This is the case of text-based transformations, such as XSLT, or per-item SPARQL transformations such as the streamed version of TARQL. In this paper, we show how the power and transformation options of RDF-based ETL tools can be combined with the possibility to transform large datasets on common consumer hardware for so called chunkable data - data which can be split in a certain way. We demonstrate our approach in our RDF-based ETL tool, LinkedPipes ETL. We include experiments on selected real world datasets and a comparison of performance and memory consumption of available tools.
Název v anglickém jazyce
Speeding up publication of Linked Data using data chunking in LinkedPipes ETL
Popis výsledku anglicky
There is a multitude of tools for preparation of Linked Data from data sources such as CSV and XML files. These tools usually perform as expected when processing examples, or smaller real world data. However, a majority of these tools become hard to use when faced with a larger dataset such as hundreds of megabytes large CSV file. Tools which load the entire resulting RDF dataset into memory usually have memory requirements unsatisfiable by commodity hardware. This is the case of RDF-based ETL tools. Their limits can be avoided by running them on powerful and expensive hardware, which is, however, not an option for majority of data publishers. Tools which process the data in a streamed way tend to have limited transformation options. This is the case of text-based transformations, such as XSLT, or per-item SPARQL transformations such as the streamed version of TARQL. In this paper, we show how the power and transformation options of RDF-based ETL tools can be combined with the possibility to transform large datasets on common consumer hardware for so called chunkable data - data which can be split in a certain way. We demonstrate our approach in our RDF-based ETL tool, LinkedPipes ETL. We include experiments on selected real world datasets and a comparison of performance and memory consumption of available tools.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09713S" target="_blank" >GA16-09713S: Efektivní explorace prostoru propojených dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Confederated International Conferences: CoopIS, C&TC, and ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part II
ISBN
978-3-319-69459-7
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
17
Strana od-do
144-160
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Rhodes, Greece
Datum konání akce
23. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—