Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts

  • Popis výsledku v původním jazyce

    A main task of weather services is the issuing of warnings for potentially harmful weather events. Automated warning guidances can be derived, e.g., from statistical post-processing of numerical weather prediction using meteorological observations. These statistical methods commonly estimate the probability of an event (e.g. precipitation) occurring at a fixed location (a point probability). However, there are no operationally applicable techniques for estimating the probability of precipitation occurring anywhere in a geographical region (an area probability). We present an approach to the estimation of area probabilities for the occurrence of precipitation exceeding given thresholds. This approach is based on a spatial stochastic model for precipitation cells and precipitation amounts. The basic modeling component is a non-stationary germ-grain model with circular grains for the representation of precipitation cells. Then, we assign a randomly scaled response function to each precipitation cell and sum these functions up to obtain precipitation amounts. We derive formulas for expectations and variances of point precipitation amounts and use these formulas to compute further model characteristics based on available sequences of point probabilities. Area probabilities for arbitrary areas and thresholds can be estimated by repeated Monte Carlo simulation of the fitted precipitation model. Finally, we verify the proposed model by comparing the generated area probabilities with independent rain gauge adjusted radar data. The novelty of the presented approach is that, for the first time, a widely applicable estimation of area probabilities is possible, which is based solely on predicted point probabilities (i.e., neither precipitation observations nor further input of the forecaster are necessary). Therefore, this method can be applied for operational weather predictions.

  • Název v anglickém jazyce

    On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts

  • Popis výsledku anglicky

    A main task of weather services is the issuing of warnings for potentially harmful weather events. Automated warning guidances can be derived, e.g., from statistical post-processing of numerical weather prediction using meteorological observations. These statistical methods commonly estimate the probability of an event (e.g. precipitation) occurring at a fixed location (a point probability). However, there are no operationally applicable techniques for estimating the probability of precipitation occurring anywhere in a geographical region (an area probability). We present an approach to the estimation of area probabilities for the occurrence of precipitation exceeding given thresholds. This approach is based on a spatial stochastic model for precipitation cells and precipitation amounts. The basic modeling component is a non-stationary germ-grain model with circular grains for the representation of precipitation cells. Then, we assign a randomly scaled response function to each precipitation cell and sum these functions up to obtain precipitation amounts. We derive formulas for expectations and variances of point precipitation amounts and use these formulas to compute further model characteristics based on available sequences of point probabilities. Area probabilities for arbitrary areas and thresholds can be estimated by repeated Monte Carlo simulation of the fitted precipitation model. Finally, we verify the proposed model by comparing the generated area probabilities with independent rain gauge adjusted radar data. The novelty of the presented approach is that, for the first time, a widely applicable estimation of area probabilities is possible, which is based solely on predicted point probabilities (i.e., neither precipitation observations nor further input of the forecaster are necessary). Therefore, this method can be applied for operational weather predictions.

Klasifikace

  • Druh

    Jimp - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Stochastic Environmental Research and Risk Assessment

  • ISSN

    1436-3240

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

    2659-2674

  • Kód UT WoS článku

    000415137900013

  • EID výsledku v databázi Scopus

    2-s2.0-84988692196