Scalable 3D shape retrieval using local features and the signature quadratic form distance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366344" target="_blank" >RIV/00216208:11320/17:10366344 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00371-016-1301-5" target="_blank" >http://dx.doi.org/10.1007/s00371-016-1301-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00371-016-1301-5" target="_blank" >10.1007/s00371-016-1301-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable 3D shape retrieval using local features and the signature quadratic form distance
Popis výsledku v původním jazyce
We present a scalable and unsupervised approach for content-based retrieval on 3D model collections. Our goal is to represent a 3D shape as a set of discriminative local features, which is important to maintain robustness against deformations such as non-rigid transformations and partial data. However, this representation brings up the problem on how to compare two 3D models represented by feature sets. For solving this problem, we apply the signature quadratic form distance (SQFD), which is suitable for comparing feature sets. Using SQFD, the matching between two 3D objects involves only their representations, so it is easy to add new models to the collection. A key characteristic of the feature signatures, required by the SQFD, is that the final object representation can be easily obtained in a unsupervised manner. Additionally, as the SQFD is an expensive distance function, to make the system scalable we present a novel technique to reduce the amount of features by detecting clusters of key points on a 3D model. Thus, with smaller feature sets, the distance calculation is more efficient. Our experiments on a large-scale dataset show that our proposed matching algorithm not only performs efficiently, but also its effectiveness is better than state-of-the-art matching algorithms for 3D models.
Název v anglickém jazyce
Scalable 3D shape retrieval using local features and the signature quadratic form distance
Popis výsledku anglicky
We present a scalable and unsupervised approach for content-based retrieval on 3D model collections. Our goal is to represent a 3D shape as a set of discriminative local features, which is important to maintain robustness against deformations such as non-rigid transformations and partial data. However, this representation brings up the problem on how to compare two 3D models represented by feature sets. For solving this problem, we apply the signature quadratic form distance (SQFD), which is suitable for comparing feature sets. Using SQFD, the matching between two 3D objects involves only their representations, so it is easy to add new models to the collection. A key characteristic of the feature signatures, required by the SQFD, is that the final object representation can be easily obtained in a unsupervised manner. Additionally, as the SQFD is an expensive distance function, to make the system scalable we present a novel technique to reduce the amount of features by detecting clusters of key points on a 3D model. Thus, with smaller feature sets, the distance calculation is more efficient. Our experiments on a large-scale dataset show that our proposed matching algorithm not only performs efficiently, but also its effectiveness is better than state-of-the-art matching algorithms for 3D models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Visual Computer
ISSN
0178-2789
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
1571-1585
Kód UT WoS článku
000413458600007
EID výsledku v databázi Scopus
—