Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scalable 3D shape retrieval using local features and the signature quadratic form distance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366344" target="_blank" >RIV/00216208:11320/17:10366344 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00371-016-1301-5" target="_blank" >http://dx.doi.org/10.1007/s00371-016-1301-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00371-016-1301-5" target="_blank" >10.1007/s00371-016-1301-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scalable 3D shape retrieval using local features and the signature quadratic form distance

  • Popis výsledku v původním jazyce

    We present a scalable and unsupervised approach for content-based retrieval on 3D model collections. Our goal is to represent a 3D shape as a set of discriminative local features, which is important to maintain robustness against deformations such as non-rigid transformations and partial data. However, this representation brings up the problem on how to compare two 3D models represented by feature sets. For solving this problem, we apply the signature quadratic form distance (SQFD), which is suitable for comparing feature sets. Using SQFD, the matching between two 3D objects involves only their representations, so it is easy to add new models to the collection. A key characteristic of the feature signatures, required by the SQFD, is that the final object representation can be easily obtained in a unsupervised manner. Additionally, as the SQFD is an expensive distance function, to make the system scalable we present a novel technique to reduce the amount of features by detecting clusters of key points on a 3D model. Thus, with smaller feature sets, the distance calculation is more efficient. Our experiments on a large-scale dataset show that our proposed matching algorithm not only performs efficiently, but also its effectiveness is better than state-of-the-art matching algorithms for 3D models.

  • Název v anglickém jazyce

    Scalable 3D shape retrieval using local features and the signature quadratic form distance

  • Popis výsledku anglicky

    We present a scalable and unsupervised approach for content-based retrieval on 3D model collections. Our goal is to represent a 3D shape as a set of discriminative local features, which is important to maintain robustness against deformations such as non-rigid transformations and partial data. However, this representation brings up the problem on how to compare two 3D models represented by feature sets. For solving this problem, we apply the signature quadratic form distance (SQFD), which is suitable for comparing feature sets. Using SQFD, the matching between two 3D objects involves only their representations, so it is easy to add new models to the collection. A key characteristic of the feature signatures, required by the SQFD, is that the final object representation can be easily obtained in a unsupervised manner. Additionally, as the SQFD is an expensive distance function, to make the system scalable we present a novel technique to reduce the amount of features by detecting clusters of key points on a 3D model. Thus, with smaller feature sets, the distance calculation is more efficient. Our experiments on a large-scale dataset show that our proposed matching algorithm not only performs efficiently, but also its effectiveness is better than state-of-the-art matching algorithms for 3D models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Visual Computer

  • ISSN

    0178-2789

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    15

  • Strana od-do

    1571-1585

  • Kód UT WoS článku

    000413458600007

  • EID výsledku v databázi Scopus