Interpolation of the coupling-ray-theory Green function within ray cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366946" target="_blank" >RIV/00216208:11320/17:10366946 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpolation of the coupling-ray-theory Green function within ray cells
Popis výsledku v původním jazyce
The coupling-ray-theory tensor Green function for elastic S waves is frequency dependent, and is usually calculated for many frequencies. This frequency dependence represents no problem for calculating the Green function, but may be impractical or even unrealistic in storing the Green function at the nodes of dense grids, typical for applications such as Born approximation or non-linear source determination. We have already proposed the approximation of the coupling-ray-theory tensor Green function, in the vicinity of a given prevailing frequency, by two coupling-ray-theory dyadic Green functions described by their coupling-ray-theory travel times and their coupling-ray-theory amplitudes. The above mentioned prevailing-frequency approximation of the coupling ray theory enables us to interpolate the coupling-ray-theory dyadic Green functions within ray cells, and to calculate them at the nodes of dense grids. For the interpolation within ray cells, we need to separate the pairs of the prevailing-frequency coupling-ray-theory dyadic Green functions so that both the first Green function and the second Green function are continuous along rays and within ray cells. In this contribution, we describe the current progress in this field and outline the basic algorithms. We also demonstrate the preliminary numerical results in several velocity models.
Název v anglickém jazyce
Interpolation of the coupling-ray-theory Green function within ray cells
Popis výsledku anglicky
The coupling-ray-theory tensor Green function for elastic S waves is frequency dependent, and is usually calculated for many frequencies. This frequency dependence represents no problem for calculating the Green function, but may be impractical or even unrealistic in storing the Green function at the nodes of dense grids, typical for applications such as Born approximation or non-linear source determination. We have already proposed the approximation of the coupling-ray-theory tensor Green function, in the vicinity of a given prevailing frequency, by two coupling-ray-theory dyadic Green functions described by their coupling-ray-theory travel times and their coupling-ray-theory amplitudes. The above mentioned prevailing-frequency approximation of the coupling ray theory enables us to interpolate the coupling-ray-theory dyadic Green functions within ray cells, and to calculate them at the nodes of dense grids. For the interpolation within ray cells, we need to separate the pairs of the prevailing-frequency coupling-ray-theory dyadic Green functions so that both the first Green function and the second Green function are continuous along rays and within ray cells. In this contribution, we describe the current progress in this field and outline the basic algorithms. We also demonstrate the preliminary numerical results in several velocity models.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Expanded Abstracts of 15th Int. Congress of the Brazilian Geophysical Society
ISBN
—
ISSN
2175-4551
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Brazilian Geophysical Society
Místo vydání
Rio de Janeiro
Místo konání akce
Rio de Janeiro
Datum konání akce
31. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—