Voting and Bribing in Single-Exponential Time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367616" target="_blank" >RIV/00216208:11320/17:10367616 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2017.46" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.STACS.2017.46</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2017.46" target="_blank" >10.4230/LIPIcs.STACS.2017.46</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Voting and Bribing in Single-Exponential Time
Popis výsledku v původním jazyce
We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery problem, the goal is to bribe a set of voters at minimum cost such that a desired candidate wins the manipulated election under the voting rule R. Voters assign prices for withdrawing their vote, for swapping the positions of two consecutive candidates in their preference order, and for perturbing their approval count for a candidate. As our main result, we show that R-Multi-Bribery is fixed-parameter tractable parameterized by the number of candidates for many natural voting rules R, including Kemeny rule, all scoring protocols, maximin rule, Bucklin rule, fallback rule, SP-AV, and any C1 rule. In particular, our result resolves the parameterized of R-Swap Bribery for all those voting rules, thereby solving a long-standing open problem and "Challenge #2" of the 9 Challenges in computational social choice by Bredereck et al. Further, our algorithm runs in single-exponential time for arbitrary cost; it thus improves the earlier double-exponential time algorithm by Dorn and Schlotter that is restricted to the unit-cost case for all scoring protocols, the maximin rule, and Bucklin rule.
Název v anglickém jazyce
Voting and Bribing in Single-Exponential Time
Popis výsledku anglicky
We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery problem, the goal is to bribe a set of voters at minimum cost such that a desired candidate wins the manipulated election under the voting rule R. Voters assign prices for withdrawing their vote, for swapping the positions of two consecutive candidates in their preference order, and for perturbing their approval count for a candidate. As our main result, we show that R-Multi-Bribery is fixed-parameter tractable parameterized by the number of candidates for many natural voting rules R, including Kemeny rule, all scoring protocols, maximin rule, Bucklin rule, fallback rule, SP-AV, and any C1 rule. In particular, our result resolves the parameterized of R-Swap Bribery for all those voting rules, thereby solving a long-standing open problem and "Challenge #2" of the 9 Challenges in computational social choice by Bredereck et al. Further, our algorithm runs in single-exponential time for arbitrary cost; it thus improves the earlier double-exponential time algorithm by Dorn and Schlotter that is restricted to the unit-cost case for all scoring protocols, the maximin rule, and Bucklin rule.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
ISBN
978-3-95977-028-6
ISSN
1868-8969
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Hannover
Datum konání akce
8. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—