Extending Partial Representations of Proper and Unit Interval Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368370" target="_blank" >RIV/00216208:11320/17:10368370 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00453-016-0133-z" target="_blank" >http://dx.doi.org/10.1007/s00453-016-0133-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-016-0133-z" target="_blank" >10.1007/s00453-016-0133-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extending Partial Representations of Proper and Unit Interval Graphs
Popis výsledku v původním jazyce
The recently introduced problem of extending partial interval representations asks, for an interval graph with some intervals pre-drawn by the input, whether the partial representation can be extended to a representation of the entire graph. In this paper, we give a linear-time algorithm for extending proper interval representations and an almost quadratic-time algorithm for extending unit interval representations. We also introduce the more general problem of bounded representations of unit interval graphs, where the input constrains the positions of some intervals by lower and upper bounds. We show that this problem is NP-complete for disconnected input graphs and give a polynomial-time algorithm for the special class of instances, where the ordering of the connected components of the input graph along the real line is prescribed. This includes the case of partial representation extension. The hardness result sharply contrasts the recent polynomial-time algorithm for bounded representations of proper interval graphs (Balko et al. in 2013). So unless , proper and unit interval representations have vastly different structure. This explains why partial representation extension problems for these different types of representations require substantially different techniques.
Název v anglickém jazyce
Extending Partial Representations of Proper and Unit Interval Graphs
Popis výsledku anglicky
The recently introduced problem of extending partial interval representations asks, for an interval graph with some intervals pre-drawn by the input, whether the partial representation can be extended to a representation of the entire graph. In this paper, we give a linear-time algorithm for extending proper interval representations and an almost quadratic-time algorithm for extending unit interval representations. We also introduce the more general problem of bounded representations of unit interval graphs, where the input constrains the positions of some intervals by lower and upper bounds. We show that this problem is NP-complete for disconnected input graphs and give a polynomial-time algorithm for the special class of instances, where the ordering of the connected components of the input graph along the real line is prescribed. This includes the case of partial representation extension. The hardness result sharply contrasts the recent polynomial-time algorithm for bounded representations of proper interval graphs (Balko et al. in 2013). So unless , proper and unit interval representations have vastly different structure. This explains why partial representation extension problems for these different types of representations require substantially different techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
1071-1104
Kód UT WoS článku
000395509500005
EID výsledku v databázi Scopus
—