2D Material Armors Showing Superior Impact Strength of Few Layers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368808" target="_blank" >RIV/00216208:11320/17:10368808 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acsami.7b12030" target="_blank" >http://dx.doi.org/10.1021/acsami.7b12030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.7b12030" target="_blank" >10.1021/acsami.7b12030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
2D Material Armors Showing Superior Impact Strength of Few Layers
Popis výsledku v původním jazyce
We study the ballistic properties of two-dimensional (2D) materials upon the hypervelocity impacts of C-60 fullerene molecules combining ab initio density functional tight binding and finite element simulations. The critical penetration energy of monolayer membranes is determined using graphene and the 2D allotrope of boron nitride as case studies. Furthermore, the energy absorption scaling laws with a variable number of layers and interlayer spacing are investigated, for homogeneous or hybrid configurations (alternated stacking of graphene and boron nitride). At the nanolevel, a synergistic interaction between the layers emerges, not observed at the micro- and macro-scale for graphene armors. This size-scale transition in the impact behavior toward higher dimensional scales is rationalized in terms of scaling of the damaged volume and material strength. An optimal number of layers, between 5 and 10, emerges demonstrating that few-layered 2D material armors possess impact strength even higher than their monolayer counterparts. These results provide fundamental understanding for the design of ultralightweight multilayer armors using enhanced 2D material-based nanocomposites.
Název v anglickém jazyce
2D Material Armors Showing Superior Impact Strength of Few Layers
Popis výsledku anglicky
We study the ballistic properties of two-dimensional (2D) materials upon the hypervelocity impacts of C-60 fullerene molecules combining ab initio density functional tight binding and finite element simulations. The critical penetration energy of monolayer membranes is determined using graphene and the 2D allotrope of boron nitride as case studies. Furthermore, the energy absorption scaling laws with a variable number of layers and interlayer spacing are investigated, for homogeneous or hybrid configurations (alternated stacking of graphene and boron nitride). At the nanolevel, a synergistic interaction between the layers emerges, not observed at the micro- and macro-scale for graphene armors. This size-scale transition in the impact behavior toward higher dimensional scales is rationalized in terms of scaling of the damaged volume and material strength. An optimal number of layers, between 5 and 10, emerges demonstrating that few-layered 2D material armors possess impact strength even higher than their monolayer counterparts. These results provide fundamental understanding for the design of ultralightweight multilayer armors using enhanced 2D material-based nanocomposites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials & Interfaces
ISSN
1944-8244
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
46
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
40820-40830
Kód UT WoS článku
000416614600105
EID výsledku v databázi Scopus
—