Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combinatorial problems on H-graphs

Popis výsledku

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combinatorial problems on H-graphs

  • Popis výsledku v původním jazyce

    Biró, Hujter, and Tuza introduced the concept of H-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a fixed graph H. They naturally generalize many important classes of graphs. We continue their study by considering coloring, clique, and isomorphism problems. We show that if H contains a certain multigraph as a minor, then H-graphs are GI-complete and the clique problem is APX-hard. Also, when H is a cactus the clique problem can be solved in polynomial time and when a graph G has a Helly H-representation, the clique problem can be solved in polynomial time. We use treewidth to show that both the k-clique and list k-coloring problems are FPT on H-graphs. These results also apply to treewidth-bounded classes where treewidth is bounded by a function of the clique number.

  • Název v anglickém jazyce

    Combinatorial problems on H-graphs

  • Popis výsledku anglicky

    Biró, Hujter, and Tuza introduced the concept of H-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a fixed graph H. They naturally generalize many important classes of graphs. We continue their study by considering coloring, clique, and isomorphism problems. We show that if H contains a certain multigraph as a minor, then H-graphs are GI-complete and the clique problem is APX-hard. Also, when H is a cactus the clique problem can be solved in polynomial time and when a graph G has a Helly H-representation, the clique problem can be solved in polynomial time. We use treewidth to show that both the k-clique and list k-coloring problems are FPT on H-graphs. These results also apply to treewidth-bounded classes where treewidth is bounded by a function of the clique number.

Klasifikace

  • Druh

    JSC - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    223-229

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85026769520

Základní informace

Druh výsledku

JSC - Článek v periodiku v databázi SCOPUS

JSC

OECD FORD

Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Rok uplatnění

2017