Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving quality of ligand-binding site prediction with Bayesian optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369452" target="_blank" >RIV/00216208:11320/17:10369452 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/BIBM.2017.8218024" target="_blank" >https://doi.org/10.1109/BIBM.2017.8218024</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM.2017.8218024" target="_blank" >10.1109/BIBM.2017.8218024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving quality of ligand-binding site prediction with Bayesian optimization

  • Popis výsledku v původním jazyce

    Ligand binding site prediction from protein structure plays an important role in various complex rational drug design efforts. Its applications include drug side effects prediction, docking prioritization in inverse virtual screening and elucidation of protein function in genome wide structural studies. Currently available tools have limitations that disqualify them from many possible use cases. In general they are either fast and relatively inaccurate (e.g. purely geometric methods) or accurate but too slow for large scale applications (e.g. methods that rely on a large template libraries of known protein-ligand complexes). P2Rank is a recently intorduced machine learning based method that have already exhibited speeds comparable to fastest geometric methods while providing much higher identification success rates. Here we present an improved version that brings speed-up as well as higher quality predictions. A leap in predictive performance was achieved thanks to the technique of Bayesian optimization, which allowed simultaneous optimization of numerous arbitrary parameters of the algorithm. We have evaluated our method with respect to various performance and prediction quality criteria and compared it to other state of the art methods, as well as to it&apos;s previous version, with encouraging results.

  • Název v anglickém jazyce

    Improving quality of ligand-binding site prediction with Bayesian optimization

  • Popis výsledku anglicky

    Ligand binding site prediction from protein structure plays an important role in various complex rational drug design efforts. Its applications include drug side effects prediction, docking prioritization in inverse virtual screening and elucidation of protein function in genome wide structural studies. Currently available tools have limitations that disqualify them from many possible use cases. In general they are either fast and relatively inaccurate (e.g. purely geometric methods) or accurate but too slow for large scale applications (e.g. methods that rely on a large template libraries of known protein-ligand complexes). P2Rank is a recently intorduced machine learning based method that have already exhibited speeds comparable to fastest geometric methods while providing much higher identification success rates. Here we present an improved version that brings speed-up as well as higher quality predictions. A leap in predictive performance was achieved thanks to the technique of Bayesian optimization, which allowed simultaneous optimization of numerous arbitrary parameters of the algorithm. We have evaluated our method with respect to various performance and prediction quality criteria and compared it to other state of the art methods, as well as to it&apos;s previous version, with encouraging results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2017 IEEE International Conference on Bioinformatics and Biomedicine

  • ISBN

    978-1-5090-3049-1

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    2

  • Strana od-do

    2278-2279

  • Název nakladatele

    IEEE (The Institute of Electrical and Electronics Engineers)

  • Místo vydání

    Neuveden

  • Místo konání akce

    Kansas City, MO, USA

  • Datum konání akce

    13. 11. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku