Improving quality of ligand-binding site prediction with Bayesian optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369452" target="_blank" >RIV/00216208:11320/17:10369452 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/BIBM.2017.8218024" target="_blank" >https://doi.org/10.1109/BIBM.2017.8218024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM.2017.8218024" target="_blank" >10.1109/BIBM.2017.8218024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving quality of ligand-binding site prediction with Bayesian optimization
Popis výsledku v původním jazyce
Ligand binding site prediction from protein structure plays an important role in various complex rational drug design efforts. Its applications include drug side effects prediction, docking prioritization in inverse virtual screening and elucidation of protein function in genome wide structural studies. Currently available tools have limitations that disqualify them from many possible use cases. In general they are either fast and relatively inaccurate (e.g. purely geometric methods) or accurate but too slow for large scale applications (e.g. methods that rely on a large template libraries of known protein-ligand complexes). P2Rank is a recently intorduced machine learning based method that have already exhibited speeds comparable to fastest geometric methods while providing much higher identification success rates. Here we present an improved version that brings speed-up as well as higher quality predictions. A leap in predictive performance was achieved thanks to the technique of Bayesian optimization, which allowed simultaneous optimization of numerous arbitrary parameters of the algorithm. We have evaluated our method with respect to various performance and prediction quality criteria and compared it to other state of the art methods, as well as to it's previous version, with encouraging results.
Název v anglickém jazyce
Improving quality of ligand-binding site prediction with Bayesian optimization
Popis výsledku anglicky
Ligand binding site prediction from protein structure plays an important role in various complex rational drug design efforts. Its applications include drug side effects prediction, docking prioritization in inverse virtual screening and elucidation of protein function in genome wide structural studies. Currently available tools have limitations that disqualify them from many possible use cases. In general they are either fast and relatively inaccurate (e.g. purely geometric methods) or accurate but too slow for large scale applications (e.g. methods that rely on a large template libraries of known protein-ligand complexes). P2Rank is a recently intorduced machine learning based method that have already exhibited speeds comparable to fastest geometric methods while providing much higher identification success rates. Here we present an improved version that brings speed-up as well as higher quality predictions. A leap in predictive performance was achieved thanks to the technique of Bayesian optimization, which allowed simultaneous optimization of numerous arbitrary parameters of the algorithm. We have evaluated our method with respect to various performance and prediction quality criteria and compared it to other state of the art methods, as well as to it's previous version, with encouraging results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE International Conference on Bioinformatics and Biomedicine
ISBN
978-1-5090-3049-1
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
2
Strana od-do
2278-2279
Název nakladatele
IEEE (The Institute of Electrical and Electronics Engineers)
Místo vydání
Neuveden
Místo konání akce
Kansas City, MO, USA
Datum konání akce
13. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—