Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370255" target="_blank" >RIV/00216208:11320/17:10370255 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3847/1538-4365/aa876b" target="_blank" >http://dx.doi.org/10.3847/1538-4365/aa876b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4365/aa876b" target="_blank" >10.3847/1538-4365/aa876b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Popis výsledku v původním jazyce
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green's functions, represented by Will's result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.
Název v anglickém jazyce
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Popis výsledku anglicky
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green's functions, represented by Will's result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-13525S" target="_blank" >GA17-13525S: Zdroje silné gravitace a jejich astrofyzikální význam</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal, Supplement Series
ISSN
0067-0049
e-ISSN
—
Svazek periodika
232
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000410941000003
EID výsledku v databázi Scopus
2-s2.0-85030172589