Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370260" target="_blank" >RIV/00216208:11320/17:10370260 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.msea.2017.04.098" target="_blank" >http://dx.doi.org/10.1016/j.msea.2017.04.098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2017.04.098" target="_blank" >10.1016/j.msea.2017.04.098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening
Popis výsledku v původním jazyce
The microstructure of a rare earth containing magnesium alloy, Mg-4.35Y-3RE-0.36Zr wt%, was engineered through applying accumulative back extrusion (ABE) process. Toward this end, the predetermined ABE cycles were applied at 400 degrees C up to five passes under a punch speed of 5 mn/min to study the ultrafine grained microstructure formation and its corresponding texture modification in the experimental material. A variety of bimodal grain size distributions were developed at all deformation conditions. In addition, the dissolution of eutectic phase stimulated the probability of dynamic precipitation of beta phase during deformation. The latter caused a pinning effect on the grain boundary and gave rise to an inhomogeneous grain growth thereby intensified a bimodal grain size distribution (bimodality). In addition, the capability of experimental material to shear band formation during straining, even after one ABE pass, induced the level of bimodality. A remarkable grain refinement was achieved inside the shear bands due to the higher magnitude of shearing strain. Furthermore, the shear bands intersections provided suitable conditions for well defined ultrafine grain formation in between primary bands. The formation of noticeable number of these ultrafine grains within the shear bands could decrease the basal intensity thereby inducing a significant texture weakening effect. The obtained results indicated a significant improvement in both the strength (yield and ultimate) and elongation to fracture of the processed material. This was justified considering the effects of grain size, the level of bimodality and the texture weakening.
Název v anglickém jazyce
Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening
Popis výsledku anglicky
The microstructure of a rare earth containing magnesium alloy, Mg-4.35Y-3RE-0.36Zr wt%, was engineered through applying accumulative back extrusion (ABE) process. Toward this end, the predetermined ABE cycles were applied at 400 degrees C up to five passes under a punch speed of 5 mn/min to study the ultrafine grained microstructure formation and its corresponding texture modification in the experimental material. A variety of bimodal grain size distributions were developed at all deformation conditions. In addition, the dissolution of eutectic phase stimulated the probability of dynamic precipitation of beta phase during deformation. The latter caused a pinning effect on the grain boundary and gave rise to an inhomogeneous grain growth thereby intensified a bimodal grain size distribution (bimodality). In addition, the capability of experimental material to shear band formation during straining, even after one ABE pass, induced the level of bimodality. A remarkable grain refinement was achieved inside the shear bands due to the higher magnitude of shearing strain. Furthermore, the shear bands intersections provided suitable conditions for well defined ultrafine grain formation in between primary bands. The formation of noticeable number of these ultrafine grains within the shear bands could decrease the basal intensity thereby inducing a significant texture weakening effect. The obtained results indicated a significant improvement in both the strength (yield and ultimate) and elongation to fracture of the processed material. This was justified considering the effects of grain size, the level of bimodality and the texture weakening.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GB14-36566G" target="_blank" >GB14-36566G: Multidisciplinární výzkumné centrum moderních materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
ISSN
0921-5093
e-ISSN
—
Svazek periodika
698
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
218-229
Kód UT WoS článku
000405251900026
EID výsledku v databázi Scopus
—