Modelling of a free-surface ferrofluid flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370330" target="_blank" >RIV/00216208:11320/17:10370330 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmmm.2016.10.045" target="_blank" >http://dx.doi.org/10.1016/j.jmmm.2016.10.045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmmm.2016.10.045" target="_blank" >10.1016/j.jmmm.2016.10.045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of a free-surface ferrofluid flow
Popis výsledku v původním jazyce
The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results.
Název v anglickém jazyce
Modelling of a free-surface ferrofluid flow
Popis výsledku anglicky
The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnetism and Magnetic Materials
ISSN
0304-8853
e-ISSN
—
Svazek periodika
431
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
4
Strana od-do
157-160
Kód UT WoS článku
000399598600040
EID výsledku v databázi Scopus
2-s2.0-85005817968