Patterns for Self-Adaptation in Cyber-Physical Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370600" target="_blank" >RIV/00216208:11320/17:10370600 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-56345-9_13" target="_blank" >http://dx.doi.org/10.1007/978-3-319-56345-9_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-56345-9_13" target="_blank" >10.1007/978-3-319-56345-9_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Patterns for Self-Adaptation in Cyber-Physical Systems
Popis výsledku v původním jazyce
Engineering Cyber-Physical Systems (CPS) is challenging, as these systems have to handle uncertainty and change during operation. A typical approach to deal with uncertainty is enhancing the system with self-adaptation capabilities. However, realizing self-adaptation in CPS, and consequently also in Cyber-Physical Production Systems (CPPS) as a member of the CPS family, is particularly challenging due to the specific characteristics of these systems, including the seamless integration of computational and physical components, the inherent heterogeneity and large-scale of such systems, and their open-endedness. In this chapter we survey CPS studies that apply the promising design strategy of combining different self-adaptation mechanisms across the technology stack of the system. Based on the survey results, we derive recurring adaptation patterns that structure and consolidate design knowledge. The patterns offer problem-solution pairs to engineers for the design of future CPS and CPPS with self-adaptation capabilities. Finally, the chapter outlines the potential of collective intelligence systems for CPPS and their engineering based on the survey results.
Název v anglickém jazyce
Patterns for Self-Adaptation in Cyber-Physical Systems
Popis výsledku anglicky
Engineering Cyber-Physical Systems (CPS) is challenging, as these systems have to handle uncertainty and change during operation. A typical approach to deal with uncertainty is enhancing the system with self-adaptation capabilities. However, realizing self-adaptation in CPS, and consequently also in Cyber-Physical Production Systems (CPPS) as a member of the CPS family, is particularly challenging due to the specific characteristics of these systems, including the seamless integration of computational and physical components, the inherent heterogeneity and large-scale of such systems, and their open-endedness. In this chapter we survey CPS studies that apply the promising design strategy of combining different self-adaptation mechanisms across the technology stack of the system. Based on the survey results, we derive recurring adaptation patterns that structure and consolidate design knowledge. The patterns offer problem-solution pairs to engineers for the design of future CPS and CPPS with self-adaptation capabilities. Finally, the chapter outlines the potential of collective intelligence systems for CPPS and their engineering based on the survey results.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Multi-Disciplinary Engineering for Cyber-Physical Production Systems: Data Models and Software Solutions for Handling Complex Engineering Projects
ISBN
978-3-319-56345-9
Počet stran výsledku
38
Strana od-do
331-368
Počet stran knihy
474
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Kód UT WoS kapitoly
—