Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A method to predict magnetopause expansion in radial IMF events by MHD simulations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371394" target="_blank" >RIV/00216208:11320/17:10371394 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/2016JA023301" target="_blank" >http://dx.doi.org/10.1002/2016JA023301</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/2016JA023301" target="_blank" >10.1002/2016JA023301</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A method to predict magnetopause expansion in radial IMF events by MHD simulations

  • Popis výsledku v původním jazyce

    This paper presents a method for taking into account changes of solar wind parameters in the foreshock using global MHD simulations. We simulate four events with very distant subsolar magnetopause crossings that occurred during quasi-radial interplanetary magnetic field (IMF) intervals lasting from one to several hours. Using previous statistical results, we suggest that the density and velocity in the foreshock cavity decrease to similar to 60% and similar to 94% of the ambient solar wind values when the IMF cone angle falls below 50 degrees. This diminishes the solar wind dynamic pressure to 53% and causes a corresponding magnetospheric expansion. We change the upstream solar wind parameters in a global MHD model to take these foreshock effects into account. We demonstrate that the modified model predicts magnetopause distances during radial IMF intervals close to those observed by THEMIS. The strong total pressure decrease in the data seems to be a local, rather than a global, phenomenon. Although the simulations with decreased solar wind pressure generally reproduce the observed total pressure in the magnetosheath well, the total pressure in the magnetosphere often agrees better with results for nonmodified boundary conditions. The last result reveals a limitation of our method: we changed the boundary conditions along the whole inflow boundary, although a more correct approach would be to vary parameters only in the foreshock. A model with the suggested global modification of the boundary conditions better predicts the location of part of the magnetopause behind the foreshock but may fail in predicting the rest of the magnetopause.

  • Název v anglickém jazyce

    A method to predict magnetopause expansion in radial IMF events by MHD simulations

  • Popis výsledku anglicky

    This paper presents a method for taking into account changes of solar wind parameters in the foreshock using global MHD simulations. We simulate four events with very distant subsolar magnetopause crossings that occurred during quasi-radial interplanetary magnetic field (IMF) intervals lasting from one to several hours. Using previous statistical results, we suggest that the density and velocity in the foreshock cavity decrease to similar to 60% and similar to 94% of the ambient solar wind values when the IMF cone angle falls below 50 degrees. This diminishes the solar wind dynamic pressure to 53% and causes a corresponding magnetospheric expansion. We change the upstream solar wind parameters in a global MHD model to take these foreshock effects into account. We demonstrate that the modified model predicts magnetopause distances during radial IMF intervals close to those observed by THEMIS. The strong total pressure decrease in the data seems to be a local, rather than a global, phenomenon. Although the simulations with decreased solar wind pressure generally reproduce the observed total pressure in the magnetosheath well, the total pressure in the magnetosphere often agrees better with results for nonmodified boundary conditions. The last result reveals a limitation of our method: we changed the boundary conditions along the whole inflow boundary, although a more correct approach would be to vary parameters only in the foreshock. A model with the suggested global modification of the boundary conditions better predicts the location of part of the magnetopause behind the foreshock but may fail in predicting the rest of the magnetopause.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-19376S" target="_blank" >GA14-19376S: Působení ICMEs a CIRs na zemskou magnetosféru.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geophysical Research: Space Physics

  • ISSN

    2169-9380

  • e-ISSN

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    3110-3126

  • Kód UT WoS článku

    000399710900021

  • EID výsledku v databázi Scopus

    2-s2.0-85015244865