Komar fluxes of circularly polarized light beams and cylindrical metrics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371723" target="_blank" >RIV/00216208:11320/17:10371723 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevD.96.104053" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.96.104053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.96.104053" target="_blank" >10.1103/PhysRevD.96.104053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Komar fluxes of circularly polarized light beams and cylindrical metrics
Popis výsledku v původním jazyce
The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.
Název v anglickém jazyce
Komar fluxes of circularly polarized light beams and cylindrical metrics
Popis výsledku anglicky
The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GB14-37086G" target="_blank" >GB14-37086G: Centrum Alberta Einsteina pro gravitaci a astrofyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
—
Svazek periodika
96
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000416315600014
EID výsledku v databázi Scopus
2-s2.0-85037142975