Recognition of tractable DNFs representable by a constant number of intervals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371730" target="_blank" >RIV/00216208:11320/17:10371730 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.disopt.2016.11.002" target="_blank" >http://dx.doi.org/10.1016/j.disopt.2016.11.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disopt.2016.11.002" target="_blank" >10.1016/j.disopt.2016.11.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of tractable DNFs representable by a constant number of intervals
Popis výsledku v původním jazyce
In this paper we focus on a less common way how to represent Boolean functions, namely on representations by intervals of truepoints and by switch-lists. There are two problems connected to such representation: (1) a knowledge compilation problem, i. e. a problem of transforming a given representation of a Boolean function (Boolean formula, binary decision diagram, Boolean circuit,...) into an interval or switch-list representation, and (2) a knowledge compression problem, i. e. a problem of finding the most compact interval or switch-list representation among those which represent the given function. We will summarize known results about these two problems and present generalizations in both areas. The main result is a polynomial time algorithm that for a Boolean function given by a tractable formula outputs a shortest interval and switch-list representations provided that the number of switches (intervals) is bounded by a constant. This algorithm can be also thought of as a polynomial time recognition algorithm for the class of k-switch (or k-interval) functions given by a tractable formula for any fixed k.
Název v anglickém jazyce
Recognition of tractable DNFs representable by a constant number of intervals
Popis výsledku anglicky
In this paper we focus on a less common way how to represent Boolean functions, namely on representations by intervals of truepoints and by switch-lists. There are two problems connected to such representation: (1) a knowledge compilation problem, i. e. a problem of transforming a given representation of a Boolean function (Boolean formula, binary decision diagram, Boolean circuit,...) into an interval or switch-list representation, and (2) a knowledge compression problem, i. e. a problem of finding the most compact interval or switch-list representation among those which represent the given function. We will summarize known results about these two problems and present generalizations in both areas. The main result is a polynomial time algorithm that for a Boolean function given by a tractable formula outputs a shortest interval and switch-list representations provided that the number of switches (intervals) is bounded by a constant. This algorithm can be also thought of as a polynomial time recognition algorithm for the class of k-switch (or k-interval) functions given by a tractable formula for any fixed k.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-15511S" target="_blank" >GA15-15511S: Booleovské techniky v reprezentaci znalostí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Optimization
ISSN
1572-5286
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000395849900001
EID výsledku v databázi Scopus
2-s2.0-85008154371