Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Results of the WMT17 Neural MT Training Task

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372141" target="_blank" >RIV/00216208:11320/17:10372141 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Results of the WMT17 Neural MT Training Task

  • Popis výsledku v původním jazyce

    This paper presents the results of the WMT17 Neural MT Training Task. The objective of this task is to explore the methods of training a fixed neural architecture, aiming primarily at the best translation quality and, as a secondary goal, shorter training time. Task participants were provided with a complete neural machine translation system, fixed training data and the configuration of the network. The translation was performed in the English-to-Czech direction and the task was divided into two subtasks of different configurations - one scaled to fit on a 4GB and another on an 8GB GPU card. We received 3 submissions for the 4GB variant and 1 submission for the 8GB variant; we provided also our run for each of the sizes and two baselines. We translated the test set with the trained models and evaluated the outputs using several automatic metrics. We also report results of the human evaluation of the submitted systems.

  • Název v anglickém jazyce

    Results of the WMT17 Neural MT Training Task

  • Popis výsledku anglicky

    This paper presents the results of the WMT17 Neural MT Training Task. The objective of this task is to explore the methods of training a fixed neural architecture, aiming primarily at the best translation quality and, as a secondary goal, shorter training time. Task participants were provided with a complete neural machine translation system, fixed training data and the configuration of the network. The translation was performed in the English-to-Czech direction and the task was divided into two subtasks of different configurations - one scaled to fit on a 4GB and another on an 8GB GPU card. We received 3 submissions for the 4GB variant and 1 submission for the 8GB variant; we provided also our run for each of the sizes and two baselines. We translated the test set with the trained models and evaluated the outputs using several automatic metrics. We also report results of the human evaluation of the submitted systems.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2015071" target="_blank" >LM2015071: Jazyková výzkumná infrastruktura v České republice</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers

  • ISBN

    978-1-945626-96-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    9

  • Strana od-do

    525-533

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg, PA, USA

  • Místo konání akce

    København, Denmark

  • Datum konání akce

    7. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku