How to Exploit Music Notation Syntax for OMR?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372149" target="_blank" >RIV/00216208:11320/17:10372149 - isvavai.cz</a>
Výsledek na webu
<a href="http://doi.org/10.1109/ICDAR.2017.275" target="_blank" >http://doi.org/10.1109/ICDAR.2017.275</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDAR.2017.275" target="_blank" >10.1109/ICDAR.2017.275</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to Exploit Music Notation Syntax for OMR?
Popis výsledku v původním jazyce
A major roadblock for Optical Music Recognition, especially for handwritten music notation, is symbol detection: recovering the locations of musical symbols from the input page. This has been attempted both with bottom-up approaches exploiting visual features, and top-down approaches based on the strong constraints that music notation syntax imposes on possible symbol configurations; sometimes joined together at appropriate points in the recognition process. The bottom-up approach has recently greatly improved with the boom of neural networks. However, the reduction in uncertainty that music notation syntax can provide has not yet been married to the power of these neural network models. This extended abstract brainstorms ways in which this can be done, and analyzes the difficulties the various combined approaches will have to address. We hope our work will foster further discussion to clarify the issues involed, provoke OMR researchers to try some of these approaches experimentally, and entice resear
Název v anglickém jazyce
How to Exploit Music Notation Syntax for OMR?
Popis výsledku anglicky
A major roadblock for Optical Music Recognition, especially for handwritten music notation, is symbol detection: recovering the locations of musical symbols from the input page. This has been attempted both with bottom-up approaches exploiting visual features, and top-down approaches based on the strong constraints that music notation syntax imposes on possible symbol configurations; sometimes joined together at appropriate points in the recognition process. The bottom-up approach has recently greatly improved with the boom of neural networks. However, the reduction in uncertainty that music notation syntax can provide has not yet been married to the power of these neural network models. This extended abstract brainstorms ways in which this can be done, and analyzes the difficulties the various combined approaches will have to address. We hope our work will foster further discussion to clarify the issues involed, provoke OMR researchers to try some of these approaches experimentally, and entice resear
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th IAPR International Workshop on Graphics Recognition
ISBN
978-1-5386-3586-5
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
2
Strana od-do
55-56
Název nakladatele
IEEE Computer Society
Místo vydání
New York, USA
Místo konání akce
Kyoto, Japan
Datum konání akce
9. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—