CUNI NMT System for WAT 2017 Translation Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10390123" target="_blank" >RIV/00216208:11320/17:10390123 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CUNI NMT System for WAT 2017 Translation Tasks
Popis výsledku v původním jazyce
The paper presents this year's CUNI submissions to the WAT 2017 Translation Task focusing on the Japanese-English translation, namely Scientific papers subtask, Patents subtask and Newswire subtask. We compare two neural network architectures, the standard sequence-to-sequence with attention (Seq2Seq) (Bahdanau et al., 2014) and an architecture using convolutional sentence encoder (FBConv2Seq) described by Gehring et al. (2017), both implemented in the NMT framework Neural Monkey that we currently participate in developing. We also compare various types of preprocessing of the source Japanese sentences and their impact on the overall results. Furthermore, we include the results of our experiments with out-of-domain data obtained by combining the corpora provided for each subtask.
Název v anglickém jazyce
CUNI NMT System for WAT 2017 Translation Tasks
Popis výsledku anglicky
The paper presents this year's CUNI submissions to the WAT 2017 Translation Task focusing on the Japanese-English translation, namely Scientific papers subtask, Patents subtask and Newswire subtask. We compare two neural network architectures, the standard sequence-to-sequence with attention (Seq2Seq) (Bahdanau et al., 2014) and an architecture using convolutional sentence encoder (FBConv2Seq) described by Gehring et al. (2017), both implemented in the NMT framework Neural Monkey that we currently participate in developing. We also compare various types of preprocessing of the source Japanese sentences and their impact on the overall results. Furthermore, we include the results of our experiments with out-of-domain data obtained by combining the corpora provided for each subtask.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 4th Workshop on Asian Translation (WAT2017)
ISBN
978-1-948087-06-3
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
154-159
Název nakladatele
Asian Federation of Natural Language Processing
Místo vydání
Taipei, Taiwan
Místo konání akce
Taipei, Taiwan
Datum konání akce
27. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—