Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10370372" target="_blank" >RIV/00216208:11320/18:10370372 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs11120-017-0398-3" target="_blank" >https://link.springer.com/article/10.1007%2Fs11120-017-0398-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11120-017-0398-3" target="_blank" >10.1007/s11120-017-0398-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum
Popis výsledku v původním jazyce
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
Název v anglickém jazyce
Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum
Popis výsledku anglicky
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Photosynthesis Research
ISSN
0166-8595
e-ISSN
—
Svazek periodika
135
Číslo periodika v rámci svazku
1-3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
45-54
Kód UT WoS článku
000423338500006
EID výsledku v databázi Scopus
2-s2.0-85019914789