Bootstrapping Nonparametric M-Smoothers with Independent Error Terms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384378" target="_blank" >RIV/00216208:11320/18:10384378 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-96941-1" target="_blank" >https://doi.org/10.1007/978-3-319-96941-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-96941-1" target="_blank" >10.1007/978-3-319-96941-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bootstrapping Nonparametric M-Smoothers with Independent Error Terms
Popis výsledku v původním jazyce
Nonparametric regression approaches are flexible modeling tools in mod- ern statistics. On the other hand, the lack of any parameters makes these approaches more challenging when assessing some statistical inference in these models. This is crucial especially in situations when one needs to perform some statistical tests or to construct some confidence sets. In such cases, it is common to use a bootstrap ap- proximation instead. It is an effective alternative to more straightforward but rather slow plug-in techniques. In this paper we introduce a proper bootstrap algorithm for a robustified versions of the nonparametric estimates, so called M-smoothers, or M-estimates respectively. We distinguish situations for homoscedastic and het- eroscedastic independent error terms and we prove the consistency of the bootstrap approximation under both scenarios. Technical proofs are provided and the finite sample properties are investigated via a simulation study.
Název v anglickém jazyce
Bootstrapping Nonparametric M-Smoothers with Independent Error Terms
Popis výsledku anglicky
Nonparametric regression approaches are flexible modeling tools in mod- ern statistics. On the other hand, the lack of any parameters makes these approaches more challenging when assessing some statistical inference in these models. This is crucial especially in situations when one needs to perform some statistical tests or to construct some confidence sets. In such cases, it is common to use a bootstrap ap- proximation instead. It is an effective alternative to more straightforward but rather slow plug-in techniques. In this paper we introduce a proper bootstrap algorithm for a robustified versions of the nonparametric estimates, so called M-smoothers, or M-estimates respectively. We distinguish situations for homoscedastic and het- eroscedastic independent error terms and we prove the consistency of the bootstrap approximation under both scenarios. Technical proofs are provided and the finite sample properties are investigated via a simulation study.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Nonparametric Statistics - 3rd ISNPS, Avignon, France, June 2016
ISBN
978-3-319-96940-4
Počet stran výsledku
15
Strana od-do
1-15
Počet stran knihy
352
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Springer Nature Switzerland AG
Kód UT WoS kapitoly
—