Equilibration in two-dimensional Bose systems with disorders
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384683" target="_blank" >RIV/00216208:11320/18:10384683 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1140/epjd/e2018-80733-7" target="_blank" >https://doi.org/10.1140/epjd/e2018-80733-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjd/e2018-80733-7" target="_blank" >10.1140/epjd/e2018-80733-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equilibration in two-dimensional Bose systems with disorders
Popis výsledku v původním jazyce
A recent experiment in a two-dimensional optical lattice with random disorder potentials [J.-y. Choi et al., Science 352, 1547 (2016)] provided evidence of nonergodic behaviour in a gas of strongly interacting ultracold atoms. The authors found a critical disorder strength that separates system dynamics into an ergodic and a nonergodic regime which they interpreted as many-body localization transition. We model an analogous but smaller system numerically using a method based on tree tensor networks and try to follow the experimental setup as closely as possible. Our results support the experimental observation of the two dynamics regimes, where for weak disorders particles spread over the lattice and thermalize, and for strong disorders the system keeps a memory of the initial state even after fairly long evolution times. Because the imbalance and the entanglement entropy are not fully saturated at our longest evolution times, we propose to perform experiments with smaller systems and with longer evolution times that are also accessible in numerical simulations. Then, the comparison of experimental and numerical data can unambiguously resolve the question whether the observed effect is truly a case of many-body localization transition.
Název v anglickém jazyce
Equilibration in two-dimensional Bose systems with disorders
Popis výsledku anglicky
A recent experiment in a two-dimensional optical lattice with random disorder potentials [J.-y. Choi et al., Science 352, 1547 (2016)] provided evidence of nonergodic behaviour in a gas of strongly interacting ultracold atoms. The authors found a critical disorder strength that separates system dynamics into an ergodic and a nonergodic regime which they interpreted as many-body localization transition. We model an analogous but smaller system numerically using a method based on tree tensor networks and try to follow the experimental setup as closely as possible. Our results support the experimental observation of the two dynamics regimes, where for weak disorders particles spread over the lattice and thermalize, and for strong disorders the system keeps a memory of the initial state even after fairly long evolution times. Because the imbalance and the entanglement entropy are not fully saturated at our longest evolution times, we propose to perform experiments with smaller systems and with longer evolution times that are also accessible in numerical simulations. Then, the comparison of experimental and numerical data can unambiguously resolve the question whether the observed effect is truly a case of many-body localization transition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-10267S" target="_blank" >GA15-10267S: Molekulární procesy ve vesmíru</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal D
ISSN
1434-6060
e-ISSN
—
Svazek periodika
72
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000436369700005
EID výsledku v databázi Scopus
2-s2.0-85048866679