Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384768" target="_blank" >RIV/00216208:11320/18:10384768 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.icarus.2017.12.010" target="_blank" >https://doi.org/10.1016/j.icarus.2017.12.010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.icarus.2017.12.010" target="_blank" >10.1016/j.icarus.2017.12.010</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?

  • Popis výsledku v původním jazyce

    The long-wavelength topography of Titan is characterized by relatively small amplitudes (about 1 km peak to peak), an anomalous equatorial bulge (the poles are about 300 m lower than the equator), and small gravity anomalies, indicating a high degree of compensation. In the past years, the nature of Titan&apos;s non-hydrostatic topography has been addressed in several studies. The topography has been interpreted in terms of isostatic or viscous models and discussed in connection with tidal heating in the ice shell and surface erosion. Here, we present a model of the shape evolution of Titan&apos;s ice shell driven by tidal heating in the shell and spatial variations of the heat flux from a subsurface ocean. The model is obtained by solving a general set of equations coupling the viscoelastic flow of ice with the thermal evolution of the ice shell and phase transitions at the ice/water interface. The equations are solved in a domain with radially varying material properties and moving boundaries. The motion of the boundaries is a consequence of ice flow within the shell, melting and crystallization at the bottom boundary and erosion and deposition at the surface. Our model suggests that Titan&apos;s anomalous topographic bulge can be explained by lateral variations of ocean heat flux of the order of 0.1-1 mW m(-2), provided that the heat flux is stable over a period of at least 10 Myr and the ice shell has a sufficiently high viscosity, exceeding 10(16) Pa s at the base of the shell. Such a high value of viscosity implies that either the ice grams are coarse (greater than or similar to 10 mm) or the temperature of the ocean is significantly (by more than 40 K) lower than the melting temperature of pure water ice. The heat flux pattern predicted on top of the ocean is consistent with a flow characterized by upwelling of warm water in polar regions and downwelling of cold water at low latitudes. The negative correlation between the topography and geoid at degree 3 reported in a previous study (but not confirmed at higher degrees yet) is shown to be compatible with erosion and deposition occurring at a rate of 0.01-0.1 mm yr(-1) . Our results underline the importance of gravity and topography measurements for understanding Titan&apos;s surface and deep interior processes

  • Název v anglickém jazyce

    Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?

  • Popis výsledku anglicky

    The long-wavelength topography of Titan is characterized by relatively small amplitudes (about 1 km peak to peak), an anomalous equatorial bulge (the poles are about 300 m lower than the equator), and small gravity anomalies, indicating a high degree of compensation. In the past years, the nature of Titan&apos;s non-hydrostatic topography has been addressed in several studies. The topography has been interpreted in terms of isostatic or viscous models and discussed in connection with tidal heating in the ice shell and surface erosion. Here, we present a model of the shape evolution of Titan&apos;s ice shell driven by tidal heating in the shell and spatial variations of the heat flux from a subsurface ocean. The model is obtained by solving a general set of equations coupling the viscoelastic flow of ice with the thermal evolution of the ice shell and phase transitions at the ice/water interface. The equations are solved in a domain with radially varying material properties and moving boundaries. The motion of the boundaries is a consequence of ice flow within the shell, melting and crystallization at the bottom boundary and erosion and deposition at the surface. Our model suggests that Titan&apos;s anomalous topographic bulge can be explained by lateral variations of ocean heat flux of the order of 0.1-1 mW m(-2), provided that the heat flux is stable over a period of at least 10 Myr and the ice shell has a sufficiently high viscosity, exceeding 10(16) Pa s at the base of the shell. Such a high value of viscosity implies that either the ice grams are coarse (greater than or similar to 10 mm) or the temperature of the ocean is significantly (by more than 40 K) lower than the melting temperature of pure water ice. The heat flux pattern predicted on top of the ocean is consistent with a flow characterized by upwelling of warm water in polar regions and downwelling of cold water at low latitudes. The negative correlation between the topography and geoid at degree 3 reported in a previous study (but not confirmed at higher degrees yet) is shown to be compatible with erosion and deposition occurring at a rate of 0.01-0.1 mm yr(-1) . Our results underline the importance of gravity and topography measurements for understanding Titan&apos;s surface and deep interior processes

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Icarus

  • ISSN

    0019-1035

  • e-ISSN

  • Svazek periodika

    310

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    149-164

  • Kód UT WoS článku

    000432763100011

  • EID výsledku v databázi Scopus

    2-s2.0-85038828792