FINE STRUCTURE OF 4-CRITICAL TRIANGLE-FREE GRAPHS I. PLANAR GRAPHS WITH TWO TRIANGLES AND 3-COLORABILITY OF CHAINS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385413" target="_blank" >RIV/00216208:11320/18:10385413 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/15M1023385" target="_blank" >https://doi.org/10.1137/15M1023385</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/15M1023385" target="_blank" >10.1137/15M1023385</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FINE STRUCTURE OF 4-CRITICAL TRIANGLE-FREE GRAPHS I. PLANAR GRAPHS WITH TWO TRIANGLES AND 3-COLORABILITY OF CHAINS
Popis výsledku v původním jazyce
Aksenov proved that in a planar graph G with at most one triangle, every precoloring of a 4-cycle can be extended to a 3-coloring of G. We give an exact characterization of planar graphs with two triangles in which some precoloring of a 4-cycle does not extend. We apply this characterization to solve the precoloring extension problem from two 4-cycles in a triangle-free planar graph in the case that the precolored 4-cycles are separated by many disjoint 4-cycles. The latter result is used in follow-up papers [SIAM J. Discrete Math., 31 (2017), pp. 865-874; SIAM J. Discrete Math., 32 (2018), pp. 94-105] to give detailed information about the structure of 4-critical triangle-free graphs embedded in a fixed surface.
Název v anglickém jazyce
FINE STRUCTURE OF 4-CRITICAL TRIANGLE-FREE GRAPHS I. PLANAR GRAPHS WITH TWO TRIANGLES AND 3-COLORABILITY OF CHAINS
Popis výsledku anglicky
Aksenov proved that in a planar graph G with at most one triangle, every precoloring of a 4-cycle can be extended to a 3-coloring of G. We give an exact characterization of planar graphs with two triangles in which some precoloring of a 4-cycle does not extend. We apply this characterization to solve the precoloring extension problem from two 4-cycles in a triangle-free planar graph in the case that the precolored 4-cycles are separated by many disjoint 4-cycles. The latter result is used in follow-up papers [SIAM J. Discrete Math., 31 (2017), pp. 865-874; SIAM J. Discrete Math., 32 (2018), pp. 94-105] to give detailed information about the structure of 4-critical triangle-free graphs embedded in a fixed surface.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-19503S" target="_blank" >GA14-19503S: Barevnost a struktura grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
1775-1805
Kód UT WoS článku
000450810500012
EID výsledku v databázi Scopus
2-s2.0-85053937646