Brownian motion surviving in the unstable cubic potential and the role of Maxwell's demon
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385538" target="_blank" >RIV/00216208:11320/18:10385538 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/18:73587147
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevE.97.032127" target="_blank" >https://doi.org/10.1103/PhysRevE.97.032127</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.97.032127" target="_blank" >10.1103/PhysRevE.97.032127</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Brownian motion surviving in the unstable cubic potential and the role of Maxwell's demon
Popis výsledku v původním jazyce
The trajectories of an overdamped particle in a highly unstable potential diverge so rapidly, that the variance of position grows much faster than its mean. A description of the dynamics by moments is therefore not informative. Instead, we propose and analyze local directly measurable characteristics, which overcome this limitation. We discuss the most probable particle position (position of the maximum of the probability density) and the local uncertainty in an unstable cubic potential, V (x) similar to x(3), both in the transient regime and in the long-time limit. The maximum shifts against the acting force as a function of time and temperature. Simultaneously, the local uncertainty does not increase faster than the observable shift. In the long-time limit, the probability density naturally attains a quasistationary form. We interpret this process as a stabilization via the measurement-feedback mechanism, the Maxwell demon, which works as an entropy pump. The rules for measurement and feedback naturally arise from the basic properties of the unstable dynamics. All reported effects are inherent in any unstable system. Their detailed understanding will stimulate the development of stochastic engines and amplifiers and, later, their quantum counterparts.
Název v anglickém jazyce
Brownian motion surviving in the unstable cubic potential and the role of Maxwell's demon
Popis výsledku anglicky
The trajectories of an overdamped particle in a highly unstable potential diverge so rapidly, that the variance of position grows much faster than its mean. A description of the dynamics by moments is therefore not informative. Instead, we propose and analyze local directly measurable characteristics, which overcome this limitation. We discuss the most probable particle position (position of the maximum of the probability density) and the local uncertainty in an unstable cubic potential, V (x) similar to x(3), both in the transient regime and in the long-time limit. The maximum shifts against the acting force as a function of time and temperature. Simultaneously, the local uncertainty does not increase faster than the observable shift. In the long-time limit, the probability density naturally attains a quasistationary form. We interpret this process as a stabilization via the measurement-feedback mechanism, the Maxwell demon, which works as an entropy pump. The rules for measurement and feedback naturally arise from the basic properties of the unstable dynamics. All reported effects are inherent in any unstable system. Their detailed understanding will stimulate the development of stochastic engines and amplifiers and, later, their quantum counterparts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000428166300002
EID výsledku v databázi Scopus
2-s2.0-85044400657