Cycling Tames Power Fluctuations near Optimum Efficiency
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385539" target="_blank" >RIV/00216208:11320/18:10385539 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevLett.121.120601" target="_blank" >https://doi.org/10.1103/PhysRevLett.121.120601</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.121.120601" target="_blank" >10.1103/PhysRevLett.121.120601</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cycling Tames Power Fluctuations near Optimum Efficiency
Popis výsledku v původním jazyce
According to the laws of thermodynamics, no heat engine can beat the efficiency of a Carrot cycle. This efficiency traditionally comes with vanishing power output and practical designs, optimized for power, generally achieve far less. Recently, various strategies to obtain Carrot's efficiency at large power were proposed. However, a thermodynamic uncertainty relation implies that steady-state heat engines can operate in this regime only at the cost of large fluctuations that render them immensely unreliable. Here, we demonstrate that this unfortunate trade-off can be overcome by designs operating cyclically under quasistatic conditions. The experimentally relevant yet exactly solvable model of an overdamped Brownian heat engine is used to illustrate the formal result. Our study highlights that work in cyclic heat engines and that in quasistatic ones are different stochastic processes.
Název v anglickém jazyce
Cycling Tames Power Fluctuations near Optimum Efficiency
Popis výsledku anglicky
According to the laws of thermodynamics, no heat engine can beat the efficiency of a Carrot cycle. This efficiency traditionally comes with vanishing power output and practical designs, optimized for power, generally achieve far less. Recently, various strategies to obtain Carrot's efficiency at large power were proposed. However, a thermodynamic uncertainty relation implies that steady-state heat engines can operate in this regime only at the cost of large fluctuations that render them immensely unreliable. Here, we demonstrate that this unfortunate trade-off can be overcome by designs operating cyclically under quasistatic conditions. The experimentally relevant yet exactly solvable model of an overdamped Brownian heat engine is used to illustrate the formal result. Our study highlights that work in cyclic heat engines and that in quasistatic ones are different stochastic processes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-06716S" target="_blank" >GA17-06716S: Stochastická termodynamika molekulárních systémů: od klasické ke kvantové</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Letters
ISSN
0031-9007
e-ISSN
—
Svazek periodika
121
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
—
Kód UT WoS článku
000444780900003
EID výsledku v databázi Scopus
2-s2.0-85053611524