Effect of low Zn doping on the Verwey transition in magnetite single crystals: Mossbauer spectroscopy and x-ray diffraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386239" target="_blank" >RIV/00216208:11320/18:10386239 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/18:00494651
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevB.98.125138" target="_blank" >https://doi.org/10.1103/PhysRevB.98.125138</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.98.125138" target="_blank" >10.1103/PhysRevB.98.125138</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of low Zn doping on the Verwey transition in magnetite single crystals: Mossbauer spectroscopy and x-ray diffraction
Popis výsledku v původním jazyce
To observe, by microscopic probe, how low Zn doping in Fe3-xZnxO4 (x is below 1%) changes the Verwey transition, we have performed Mossbauer spectroscopy measurements on three single crystalline samples with various Zn doping. In spectra analysis we used the recently published model of Mossbauer data treatment formulated as a result of ab initio calculations for a low-temperature monoclinic structure (of Cc symmetry) of magnetite. It was suggested there that the hyperfine parameters for all 24 Fe distinct positions in the lattice can be grouped into four major components with very similar hyperfine parameters within each set. Using these parameters as starting values, very good fits were obtained for magnetite with low doping level, while for higher doping, x = 0.03, where the Verwey transition changes its character, one component is significantly different. In particular, low hyperfine field B-eff = 36 T, considered as a characteristic feature of the Cc phase spectrum, is absent here. Also, in this case, the high-temperature spectra are different from those for lower doped magnetite showing more pronounced continuous alteration with temperature. This might be due to crystal structure of lower than Fd-3m symmetry, a fact suggested by our x-ray synchrotron studies. All this triggered a discussion about an experimental fingerprint for the difference between these two classes of magnetite, frequently referred to as magnetite of first- and second-order Verwey transition, and about the electronic structure of both kinds of systems.
Název v anglickém jazyce
Effect of low Zn doping on the Verwey transition in magnetite single crystals: Mossbauer spectroscopy and x-ray diffraction
Popis výsledku anglicky
To observe, by microscopic probe, how low Zn doping in Fe3-xZnxO4 (x is below 1%) changes the Verwey transition, we have performed Mossbauer spectroscopy measurements on three single crystalline samples with various Zn doping. In spectra analysis we used the recently published model of Mossbauer data treatment formulated as a result of ab initio calculations for a low-temperature monoclinic structure (of Cc symmetry) of magnetite. It was suggested there that the hyperfine parameters for all 24 Fe distinct positions in the lattice can be grouped into four major components with very similar hyperfine parameters within each set. Using these parameters as starting values, very good fits were obtained for magnetite with low doping level, while for higher doping, x = 0.03, where the Verwey transition changes its character, one component is significantly different. In particular, low hyperfine field B-eff = 36 T, considered as a characteristic feature of the Cc phase spectrum, is absent here. Also, in this case, the high-temperature spectra are different from those for lower doped magnetite showing more pronounced continuous alteration with temperature. This might be due to crystal structure of lower than Fd-3m symmetry, a fact suggested by our x-ray synchrotron studies. All this triggered a discussion about an experimental fingerprint for the difference between these two classes of magnetite, frequently referred to as magnetite of first- and second-order Verwey transition, and about the electronic structure of both kinds of systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000445508200008
EID výsledku v databázi Scopus
2-s2.0-85053875042