Homothetic polygons and beyond: Maximal cliques in intersection graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386464" target="_blank" >RIV/00216208:11320/18:10386464 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.dam.2018.03.046" target="_blank" >https://doi.org/10.1016/j.dam.2018.03.046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2018.03.046" target="_blank" >10.1016/j.dam.2018.03.046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homothetic polygons and beyond: Maximal cliques in intersection graphs
Popis výsledku v původním jazyce
We study the structure and the maximum number of maximal cliques in classes of intersection graphs of convex sets in the plane. It is known that convex-set intersection graphs, and also straight-line-segment intersection graphs may have exponentially many maximal cliques. On the other hand, in intersection graphs of homothetic triangles, the maximum number of maximal cliques is polynomial in the number of vertices. We extend the latter result by showing that for every convex polygon P with sides parallel to k directions, every n-vertex graph which is an intersection graph of homothetic copies of P contains at most n(k) inclusion-wise maximal cliques. We actually prove this result for a more general class of graphs, the so-called k(DIR)-CONY, which are intersection graphs of convex polygons whose sides are parallel to some fixed k directions. Moreover, we provide lower bounds on the maximum number of maximal cliques and generalize the upper bound to intersection graphs of higher-dimensional convex polytopes in Euclidean space. Finally, we discuss the algorithmic consequences of the polynomial bound on the number of maximal cliques. (C) 2018 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Homothetic polygons and beyond: Maximal cliques in intersection graphs
Popis výsledku anglicky
We study the structure and the maximum number of maximal cliques in classes of intersection graphs of convex sets in the plane. It is known that convex-set intersection graphs, and also straight-line-segment intersection graphs may have exponentially many maximal cliques. On the other hand, in intersection graphs of homothetic triangles, the maximum number of maximal cliques is polynomial in the number of vertices. We extend the latter result by showing that for every convex polygon P with sides parallel to k directions, every n-vertex graph which is an intersection graph of homothetic copies of P contains at most n(k) inclusion-wise maximal cliques. We actually prove this result for a more general class of graphs, the so-called k(DIR)-CONY, which are intersection graphs of convex polygons whose sides are parallel to some fixed k directions. Moreover, we provide lower bounds on the maximum number of maximal cliques and generalize the upper bound to intersection graphs of higher-dimensional convex polytopes in Euclidean space. Finally, we discuss the algorithmic consequences of the polynomial bound on the number of maximal cliques. (C) 2018 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
247
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
263-277
Kód UT WoS článku
000444362700027
EID výsledku v databázi Scopus
2-s2.0-85045342109