Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Homothetic polygons and beyond: Maximal cliques in intersection graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386464" target="_blank" >RIV/00216208:11320/18:10386464 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.dam.2018.03.046" target="_blank" >https://doi.org/10.1016/j.dam.2018.03.046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2018.03.046" target="_blank" >10.1016/j.dam.2018.03.046</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Homothetic polygons and beyond: Maximal cliques in intersection graphs

  • Popis výsledku v původním jazyce

    We study the structure and the maximum number of maximal cliques in classes of intersection graphs of convex sets in the plane. It is known that convex-set intersection graphs, and also straight-line-segment intersection graphs may have exponentially many maximal cliques. On the other hand, in intersection graphs of homothetic triangles, the maximum number of maximal cliques is polynomial in the number of vertices. We extend the latter result by showing that for every convex polygon P with sides parallel to k directions, every n-vertex graph which is an intersection graph of homothetic copies of P contains at most n(k) inclusion-wise maximal cliques. We actually prove this result for a more general class of graphs, the so-called k(DIR)-CONY, which are intersection graphs of convex polygons whose sides are parallel to some fixed k directions. Moreover, we provide lower bounds on the maximum number of maximal cliques and generalize the upper bound to intersection graphs of higher-dimensional convex polytopes in Euclidean space. Finally, we discuss the algorithmic consequences of the polynomial bound on the number of maximal cliques. (C) 2018 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Homothetic polygons and beyond: Maximal cliques in intersection graphs

  • Popis výsledku anglicky

    We study the structure and the maximum number of maximal cliques in classes of intersection graphs of convex sets in the plane. It is known that convex-set intersection graphs, and also straight-line-segment intersection graphs may have exponentially many maximal cliques. On the other hand, in intersection graphs of homothetic triangles, the maximum number of maximal cliques is polynomial in the number of vertices. We extend the latter result by showing that for every convex polygon P with sides parallel to k directions, every n-vertex graph which is an intersection graph of homothetic copies of P contains at most n(k) inclusion-wise maximal cliques. We actually prove this result for a more general class of graphs, the so-called k(DIR)-CONY, which are intersection graphs of convex polygons whose sides are parallel to some fixed k directions. Moreover, we provide lower bounds on the maximum number of maximal cliques and generalize the upper bound to intersection graphs of higher-dimensional convex polytopes in Euclidean space. Finally, we discuss the algorithmic consequences of the polynomial bound on the number of maximal cliques. (C) 2018 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Svazek periodika

    247

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    263-277

  • Kód UT WoS článku

    000444362700027

  • EID výsledku v databázi Scopus

    2-s2.0-85045342109