Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exceptional points near first- and second-order quantum phase transitions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386594" target="_blank" >RIV/00216208:11320/18:10386594 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1103/PhysRevE.97.012112" target="_blank" >https://doi.org/10.1103/PhysRevE.97.012112</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevE.97.012112" target="_blank" >10.1103/PhysRevE.97.012112</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exceptional points near first- and second-order quantum phase transitions

  • Popis výsledku v původním jazyce

    We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.

  • Název v anglickém jazyce

    Exceptional points near first- and second-order quantum phase transitions

  • Popis výsledku anglicky

    We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-07117S" target="_blank" >GA13-07117S: Statistické přístupy ke kvantovým mnohočásticovým systémům</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review E

  • ISSN

    2470-0045

  • e-ISSN

  • Svazek periodika

    97

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000419774100001

  • EID výsledku v databázi Scopus

    2-s2.0-85040736165