Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electrocatalysis with Atomically Defined Model Systems: Metal-Support Interactions between Pt Nanoparticles and Co3O4(111) under Ultrahigh Vacuum and in Liquid Electrolytes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389456" target="_blank" >RIV/00216208:11320/18:10389456 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1021/acs.jpcc.8b05594" target="_blank" >https://doi.org/10.1021/acs.jpcc.8b05594</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.8b05594" target="_blank" >10.1021/acs.jpcc.8b05594</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electrocatalysis with Atomically Defined Model Systems: Metal-Support Interactions between Pt Nanoparticles and Co3O4(111) under Ultrahigh Vacuum and in Liquid Electrolytes

  • Popis výsledku v původním jazyce

    Electronic metal-support interactions play a key role in the design of heterogeneous catalysts, as they provide a tool for tuning catalytic properties and enhancing catalyst stability. In this work, we explore the role of metal- support interactions in electrocatalysis using a model approach. We investigate the adsorption and reaction behavior of atomically defined Pt/Co3O4 model catalysts under ultrahigh vacuum (UHV) and under electrochemical conditions. The model systems were prepared by physical vapor deposition (PVD) of Pt onto well-ordered Co3O4(111) films on Ir(100), varying the average Pt nanoparticle (NP) size between 10 and 500 atoms per NP. In UHV, the model catalysts were characterized by synchrotron radiation photoelectron spectroscopy (SRPES), temperature-programmed desorption (TPD), and infrared reflection-absorption spectroscopy (IRAS). By SRPES, we show that partially oxidized Pt delta+ species are formed at the interface with the Co3O4 support. CO adsorbs weakly on these Pt delta+ sites and can be identified by IRAS at 115 K. Upon heating, CO adsorbed on metallic Pt-0 reacts with oxygen released from Co3O4 and gives rise to CO2 between 450 and 500 K. As a result of oxygen depletion, the Pt delta+ at the NP interface is reduced to Pt-0. Subsequently, we investigated the adsorption and oxidation of CO under electrochemical conditions on the same Pt/Co3O4 model catalysts. After preparation and characterization in UHV, the model systems were transferred into the electrochemical environment without exposure to ambient conditions. CO adsorption and electrooxidation were performed under conditions where the model system is stable (pH 10, 0.33-1.03 V-RHE, phosphate buffer). By electrochemical infrared reflection-absorption spectroscopy (EC-IRRAS), we show that CO does not adsorb at the partially oxidized Pt delta+ sites in the electrolyte at 300 K. Nevertheless, the Pet(delta+) species at the NP/oxide interface is reduced to Pt-0 upon repeated experimental cycles. This effect increases with decreasing NP size, in line with the behavior observed under UHV conditions. Our findings suggest that electronic metal-support interactions in metal/oxide catalysts play a very similar role in reactions with gaseous reactants and at the electrified interface.

  • Název v anglickém jazyce

    Electrocatalysis with Atomically Defined Model Systems: Metal-Support Interactions between Pt Nanoparticles and Co3O4(111) under Ultrahigh Vacuum and in Liquid Electrolytes

  • Popis výsledku anglicky

    Electronic metal-support interactions play a key role in the design of heterogeneous catalysts, as they provide a tool for tuning catalytic properties and enhancing catalyst stability. In this work, we explore the role of metal- support interactions in electrocatalysis using a model approach. We investigate the adsorption and reaction behavior of atomically defined Pt/Co3O4 model catalysts under ultrahigh vacuum (UHV) and under electrochemical conditions. The model systems were prepared by physical vapor deposition (PVD) of Pt onto well-ordered Co3O4(111) films on Ir(100), varying the average Pt nanoparticle (NP) size between 10 and 500 atoms per NP. In UHV, the model catalysts were characterized by synchrotron radiation photoelectron spectroscopy (SRPES), temperature-programmed desorption (TPD), and infrared reflection-absorption spectroscopy (IRAS). By SRPES, we show that partially oxidized Pt delta+ species are formed at the interface with the Co3O4 support. CO adsorbs weakly on these Pt delta+ sites and can be identified by IRAS at 115 K. Upon heating, CO adsorbed on metallic Pt-0 reacts with oxygen released from Co3O4 and gives rise to CO2 between 450 and 500 K. As a result of oxygen depletion, the Pt delta+ at the NP interface is reduced to Pt-0. Subsequently, we investigated the adsorption and oxidation of CO under electrochemical conditions on the same Pt/Co3O4 model catalysts. After preparation and characterization in UHV, the model systems were transferred into the electrochemical environment without exposure to ambient conditions. CO adsorption and electrooxidation were performed under conditions where the model system is stable (pH 10, 0.33-1.03 V-RHE, phosphate buffer). By electrochemical infrared reflection-absorption spectroscopy (EC-IRRAS), we show that CO does not adsorb at the partially oxidized Pt delta+ sites in the electrolyte at 300 K. Nevertheless, the Pet(delta+) species at the NP/oxide interface is reduced to Pt-0 upon repeated experimental cycles. This effect increases with decreasing NP size, in line with the behavior observed under UHV conditions. Our findings suggest that electronic metal-support interactions in metal/oxide catalysts play a very similar role in reactions with gaseous reactants and at the electrified interface.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    36

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    20787-20799

  • Kód UT WoS článku

    000444920900025

  • EID výsledku v databázi Scopus

    2-s2.0-85053293433