UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390208" target="_blank" >RIV/00216208:11320/18:10390208 - isvavai.cz</a>
Výsledek na webu
<a href="http://universaldependencies.org/conll18/proceedings/pdf/K18-2020.pdf" target="_blank" >http://universaldependencies.org/conll18/proceedings/pdf/K18-2020.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task
Popis výsledku v původním jazyce
UDPipe is a trainable pipeline which performs sentence segmentation, tokenization, POS tagging, lemmatization and dependency parsing. We present a prototype for UDPipe 2.0 and evaluate it in the CoNLL 2018 UD Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, which employs three metrics for submission ranking. Out of 26 participants, the prototype placed first in the MLAS ranking, third in the LAS ranking and third in the BLEX ranking. In extrinsic parser evaluation EPE 2018, the system ranked first in the overall score. The prototype utilizes an artificial neural network with a single joint model for POS tagging, lemmatization and dependency parsing, and is trained only using the CoNLL-U training data and pretrained word embeddings, contrary to both systems surpassing the prototype in the LAS and BLEX ranking in the shared task. The open-source code of the prototype is available at http://github.com/CoNLL-UD-2018/UDPipe-Future. After the shared task, we slightly refined the mo
Název v anglickém jazyce
UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task
Popis výsledku anglicky
UDPipe is a trainable pipeline which performs sentence segmentation, tokenization, POS tagging, lemmatization and dependency parsing. We present a prototype for UDPipe 2.0 and evaluate it in the CoNLL 2018 UD Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, which employs three metrics for submission ranking. Out of 26 participants, the prototype placed first in the MLAS ranking, third in the LAS ranking and third in the BLEX ranking. In extrinsic parser evaluation EPE 2018, the system ranked first in the overall score. The prototype utilizes an artificial neural network with a single joint model for POS tagging, lemmatization and dependency parsing, and is trained only using the CoNLL-U training data and pretrained word embeddings, contrary to both systems surpassing the prototype in the LAS and BLEX ranking in the shared task. The open-source code of the prototype is available at http://github.com/CoNLL-UD-2018/UDPipe-Future. After the shared task, we slightly refined the mo
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015071" target="_blank" >LM2015071: Jazyková výzkumná infrastruktura v České republice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of CoNLL 2018: The SIGNLL Conference on Computational Natural Language Learning
ISBN
978-1-948087-72-8
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
197-207
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA, USA
Místo konání akce
Bruxelles, Belgium
Datum konání akce
31. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—