Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SumeCzech: Large Czech News-Based Summarization Dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390209" target="_blank" >RIV/00216208:11320/18:10390209 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.lrec-conf.org/proceedings/lrec2018/summaries/825.html" target="_blank" >http://www.lrec-conf.org/proceedings/lrec2018/summaries/825.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SumeCzech: Large Czech News-Based Summarization Dataset

  • Popis výsledku v původním jazyce

    Document summarization is a well-studied NLP task. With the emergence of artificial neural network models, the summarization performance is increasing, as are the requirements on training data. However, only a few datasets are available for Czech, none of them particularly large. Additionally, summarization has been evaluated predominantly on English, with the commonly used ROUGE metric being English-specific. In this paper, we try to address both issues. We present SumeCzech, a Czech news-based summarization dataset. It contains more than a million documents, each consisting of a headline, a several sentences long abstract and a full text. The dataset can be downloaded using the provided scripts available at http://hdl.handle.net/11234/1-2615. We evaluate several summarization baselines on the dataset, including a strong abstractive approach based on Transformer neural network architecture. The evaluation is performed using a language-agnostic variant of ROUGE.

  • Název v anglickém jazyce

    SumeCzech: Large Czech News-Based Summarization Dataset

  • Popis výsledku anglicky

    Document summarization is a well-studied NLP task. With the emergence of artificial neural network models, the summarization performance is increasing, as are the requirements on training data. However, only a few datasets are available for Czech, none of them particularly large. Additionally, summarization has been evaluated predominantly on English, with the commonly used ROUGE metric being English-specific. In this paper, we try to address both issues. We present SumeCzech, a Czech news-based summarization dataset. It contains more than a million documents, each consisting of a headline, a several sentences long abstract and a full text. The dataset can be downloaded using the provided scripts available at http://hdl.handle.net/11234/1-2615. We evaluate several summarization baselines on the dataset, including a strong abstractive approach based on Transformer neural network architecture. The evaluation is performed using a language-agnostic variant of ROUGE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018)

  • ISBN

    979-10-95546-00-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    3488-3495

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

    Paris, France

  • Místo konání akce

    Miyazaki, Japan

  • Datum konání akce

    7. 5. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku