SumeCzech: Large Czech News-Based Summarization Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390209" target="_blank" >RIV/00216208:11320/18:10390209 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.lrec-conf.org/proceedings/lrec2018/summaries/825.html" target="_blank" >http://www.lrec-conf.org/proceedings/lrec2018/summaries/825.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SumeCzech: Large Czech News-Based Summarization Dataset
Popis výsledku v původním jazyce
Document summarization is a well-studied NLP task. With the emergence of artificial neural network models, the summarization performance is increasing, as are the requirements on training data. However, only a few datasets are available for Czech, none of them particularly large. Additionally, summarization has been evaluated predominantly on English, with the commonly used ROUGE metric being English-specific. In this paper, we try to address both issues. We present SumeCzech, a Czech news-based summarization dataset. It contains more than a million documents, each consisting of a headline, a several sentences long abstract and a full text. The dataset can be downloaded using the provided scripts available at http://hdl.handle.net/11234/1-2615. We evaluate several summarization baselines on the dataset, including a strong abstractive approach based on Transformer neural network architecture. The evaluation is performed using a language-agnostic variant of ROUGE.
Název v anglickém jazyce
SumeCzech: Large Czech News-Based Summarization Dataset
Popis výsledku anglicky
Document summarization is a well-studied NLP task. With the emergence of artificial neural network models, the summarization performance is increasing, as are the requirements on training data. However, only a few datasets are available for Czech, none of them particularly large. Additionally, summarization has been evaluated predominantly on English, with the commonly used ROUGE metric being English-specific. In this paper, we try to address both issues. We present SumeCzech, a Czech news-based summarization dataset. It contains more than a million documents, each consisting of a headline, a several sentences long abstract and a full text. The dataset can be downloaded using the provided scripts available at http://hdl.handle.net/11234/1-2615. We evaluate several summarization baselines on the dataset, including a strong abstractive approach based on Transformer neural network architecture. The evaluation is performed using a language-agnostic variant of ROUGE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018)
ISBN
979-10-95546-00-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
3488-3495
Název nakladatele
European Language Resources Association
Místo vydání
Paris, France
Místo konání akce
Miyazaki, Japan
Datum konání akce
7. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—