Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gray codes extending quadratic matchings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10383786" target="_blank" >RIV/00216208:11320/19:10383786 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RpudKTL58F" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RpudKTL58F</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22371" target="_blank" >10.1002/jgt.22371</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gray codes extending quadratic matchings

  • Popis výsledku v původním jazyce

    Is it true that every matching in the n-dimensional hypercube Q_n can be extended to a Gray code? More than two decades have passed since Ruskey and Savage asked this question and the problem still remains open. A solution is known only in some special cases, including perfect matchings or matchings of linear size. This article shows that the answer to the Ruskey-Savage problem is affirmative for every matching of size at most n^2/16 + n/4. The proof is based on an inductive construction that extends balanced matchings in the completion of the hypercube K(Q_n) by edges of Q_n into a Hamilton cycle of K(Q_n). On the other hand, we show that for every n &gt;= 9 there is a balanced matching in K(Q_n) of size Theta(2^n/sqrt(n)) that cannot be extended in this way.

  • Název v anglickém jazyce

    Gray codes extending quadratic matchings

  • Popis výsledku anglicky

    Is it true that every matching in the n-dimensional hypercube Q_n can be extended to a Gray code? More than two decades have passed since Ruskey and Savage asked this question and the problem still remains open. A solution is known only in some special cases, including perfect matchings or matchings of linear size. This article shows that the answer to the Ruskey-Savage problem is affirmative for every matching of size at most n^2/16 + n/4. The proof is based on an inductive construction that extends balanced matchings in the completion of the hypercube K(Q_n) by edges of Q_n into a Hamilton cycle of K(Q_n). On the other hand, we show that for every n &gt;= 9 there is a balanced matching in K(Q_n) of size Theta(2^n/sqrt(n)) that cannot be extended in this way.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-10799S" target="_blank" >GA14-10799S: Hyperkrychlové, grafové a hypergrafové struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    123-136

  • Kód UT WoS článku

    000463968200002

  • EID výsledku v databázi Scopus

    2-s2.0-85049023638