Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10395977" target="_blank" >RIV/00216208:11320/19:10395977 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GKdkj3U2Js" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GKdkj3U2Js</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijhydene.2019.04.216" target="_blank" >10.1016/j.ijhydene.2019.04.216</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells
Popis výsledku v původním jazyce
Dependence on noble metal catalysts is considered to be the main factor which hinders wider commercialization of proton exchange membrane fuel cells (PEM-FCs) and water electrolyzers (PEM-WEs). One way of lowering the loading of Pt and Ir is by using thin-film techniques for their deposition onto the high-surface conductive nanoparticles. Another approach, which is convenient in applications where the complete cycle of electricity - > H-2 - > electricity takes place, is merging the PEM-WEs and PEM-FCs into one bi-functional system - the unitized regenerative fuel cell (PEM-URFC). In accordance with the above mentioned conception, this paper revolves around unconventionally prepared bi-functional magnetron sputtered lower-loading Pt-Ir catalysts for the anode side of PEM-URFC. Two geometries of catalyst coated membranes (CCM) were compared, differing in relative positioning of individual Pt and Ir thin films sputtered on TiC-based support sublayer; the sandwich-like Ir/TiC/Pt structure and the co-sputtered Pt-Ir/TiC structure. Wide arsenal of analytical methods, ranging from photoelectron spectroscopy to electrochemical atomic force microscopy determined that co-sputtering of Pt and Ir leads to alloy formation, thus preventing iridium to fully electro-oxidize to IrOx which in turn helps to explain why sandwich-like Ir/TiC/Pt structure, with no alloy, outperforms the co-sputtered Pt-Ir/TiC CCM in both operational regimes despite having the exactly same noble metal loading. The PEM-URFC single cell with sandwich-like bi-functional anode catalyst yielded 31.8% of round-trip efficiency at 1 A cm(-2) in comparison to 34.2% achieved by combination of single-purpose cells with more than double the loading of noble metals. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells
Popis výsledku anglicky
Dependence on noble metal catalysts is considered to be the main factor which hinders wider commercialization of proton exchange membrane fuel cells (PEM-FCs) and water electrolyzers (PEM-WEs). One way of lowering the loading of Pt and Ir is by using thin-film techniques for their deposition onto the high-surface conductive nanoparticles. Another approach, which is convenient in applications where the complete cycle of electricity - > H-2 - > electricity takes place, is merging the PEM-WEs and PEM-FCs into one bi-functional system - the unitized regenerative fuel cell (PEM-URFC). In accordance with the above mentioned conception, this paper revolves around unconventionally prepared bi-functional magnetron sputtered lower-loading Pt-Ir catalysts for the anode side of PEM-URFC. Two geometries of catalyst coated membranes (CCM) were compared, differing in relative positioning of individual Pt and Ir thin films sputtered on TiC-based support sublayer; the sandwich-like Ir/TiC/Pt structure and the co-sputtered Pt-Ir/TiC structure. Wide arsenal of analytical methods, ranging from photoelectron spectroscopy to electrochemical atomic force microscopy determined that co-sputtering of Pt and Ir leads to alloy formation, thus preventing iridium to fully electro-oxidize to IrOx which in turn helps to explain why sandwich-like Ir/TiC/Pt structure, with no alloy, outperforms the co-sputtered Pt-Ir/TiC CCM in both operational regimes despite having the exactly same noble metal loading. The PEM-URFC single cell with sandwich-like bi-functional anode catalyst yielded 31.8% of round-trip efficiency at 1 A cm(-2) in comparison to 34.2% achieved by combination of single-purpose cells with more than double the loading of noble metals. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Hydrogen Energy
ISSN
0360-3199
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
31
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
16087-16098
Kód UT WoS článku
000472991100006
EID výsledku v databázi Scopus
2-s2.0-85065771642