Towards augmented database schemes by discovery of latent visual attributes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10396528" target="_blank" >RIV/00216208:11320/19:10396528 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5441/002/edbt.2019.83" target="_blank" >https://doi.org/10.5441/002/edbt.2019.83</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5441/002/edbt.2019.83" target="_blank" >10.5441/002/edbt.2019.83</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards augmented database schemes by discovery of latent visual attributes
Popis výsledku v původním jazyce
When searching for complex data entities, such as products in an e-shop, relational attributes are used as filters within structured queries. However, in many domains the visual appearance of an item is important for a user, while coverage of visual appearance by relational attributes is left to database designer at design time and is by nature an incomplete and imperfect representation of the entity. Recent advances in computer vision, dominated by deep convolutional neural networks (DCNNs), are a promising tool to cover the gaps. It has been shown that activations of neurons of DCNNs correspond to understandable visual-semantic features of an input image. We envision that activations of neurons are of great use for search queries in domains with strong visual information, even when obtained from DCNNs models pre-trained on general imagery. Locally scoped visual features obtained using them can be combined to form search masks which would correlate to what humans understand as an attribute, when applied on the entire dataset. Ultimately, combination of visual features can be identified automatically and formed into immediate suggestion of a new relational attribute, leaving one last task for humans to turn this into augmentation of the database schema - putting a label on it.
Název v anglickém jazyce
Towards augmented database schemes by discovery of latent visual attributes
Popis výsledku anglicky
When searching for complex data entities, such as products in an e-shop, relational attributes are used as filters within structured queries. However, in many domains the visual appearance of an item is important for a user, while coverage of visual appearance by relational attributes is left to database designer at design time and is by nature an incomplete and imperfect representation of the entity. Recent advances in computer vision, dominated by deep convolutional neural networks (DCNNs), are a promising tool to cover the gaps. It has been shown that activations of neurons of DCNNs correspond to understandable visual-semantic features of an input image. We envision that activations of neurons are of great use for search queries in domains with strong visual information, even when obtained from DCNNs models pre-trained on general imagery. Locally scoped visual features obtained using them can be combined to form search masks which would correlate to what humans understand as an attribute, when applied on the entire dataset. Ultimately, combination of visual features can be identified automatically and formed into immediate suggestion of a new relational attribute, leaving one last task for humans to turn this into augmentation of the database schema - putting a label on it.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-22224S" target="_blank" >GA17-22224S: Analytika uživatelských preferencí v modelech multimediální explorace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Database Technology — EDBT 2019 Proceedings of the 22nd International Conference on Extending Database Technology Lisbon, Portugal, March 26–29, 2019
ISBN
978-3-89318-081-3
ISSN
2367-2005
e-ISSN
—
Počet stran výsledku
4
Strana od-do
670-673
Název nakladatele
OpenProceedings
Místo vydání
Venice, Italy
Místo konání akce
Lisbon, Portugal
Datum konání akce
26. 3. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—