Optimal Multiple Importance Sampling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10396741" target="_blank" >RIV/00216208:11320/19:10396741 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Mpb-2-uOvr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Mpb-2-uOvr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3306346.3323009" target="_blank" >10.1145/3306346.3323009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Multiple Importance Sampling
Popis výsledku v původním jazyce
Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem.
Název v anglickém jazyce
Optimal Multiple Importance Sampling
Popis výsledku anglicky
Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Graphics
ISSN
0730-0301
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
37
Kód UT WoS článku
000475740600011
EID výsledku v databázi Scopus
2-s2.0-85073888298