Thermal skyrmion diffusion used in a reshuffler device
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399566" target="_blank" >RIV/00216208:11320/19:10399566 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Jzo897l76" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Jzo897l76</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41565-019-0436-8" target="_blank" >10.1038/s41565-019-0436-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal skyrmion diffusion used in a reshuffler device
Popis výsledku v původním jazyce
Magnetic skyrmions in thin films can be efficiently displaced with high speed by using spin-transfer torques(1,2) and spin-orbit torques(3-5) at low current densities. Although this favourable combination of properties has raised expectations for using skyrmions in devices(6,7), only a few publications have studied the thermal effects on the skyrmion dynamics(8-10). However, thermally induced skyrmion dynamics can be used for applications(11) such as unconventional computing approaches(12), as they have been predicted to be useful for probabilistic computing devices(13). In our work, we uncover thermal diffusive skyrmion dynamics by a combined experimental and numerical study. We probed the dynamics of magnetic skyrmions in a specially tailored low-pinning multilayer material. The observed thermally excited skyrmion motion dominates the dynamics. Analysing the diffusion as a function of temperature, we found an exponential dependence, which we confirmed by means of numerical simulations. The diffusion of skyrmions was further used in a signal reshuffling device as part of a skyrmion-based probabilistic computing architecture. Owing to its inherent two-dimensional texture, the observation of a diffusive motion of skyrmions in thin-film systems may also yield insights in soft-matter-like characteristics (for example, studies of fluctuation theorems, thermally induced roughening and so on), which thus makes it highly desirable to realize and study thermal effects in experimentally accessible skyrmion systems.
Název v anglickém jazyce
Thermal skyrmion diffusion used in a reshuffler device
Popis výsledku anglicky
Magnetic skyrmions in thin films can be efficiently displaced with high speed by using spin-transfer torques(1,2) and spin-orbit torques(3-5) at low current densities. Although this favourable combination of properties has raised expectations for using skyrmions in devices(6,7), only a few publications have studied the thermal effects on the skyrmion dynamics(8-10). However, thermally induced skyrmion dynamics can be used for applications(11) such as unconventional computing approaches(12), as they have been predicted to be useful for probabilistic computing devices(13). In our work, we uncover thermal diffusive skyrmion dynamics by a combined experimental and numerical study. We probed the dynamics of magnetic skyrmions in a specially tailored low-pinning multilayer material. The observed thermally excited skyrmion motion dominates the dynamics. Analysing the diffusion as a function of temperature, we found an exponential dependence, which we confirmed by means of numerical simulations. The diffusion of skyrmions was further used in a signal reshuffling device as part of a skyrmion-based probabilistic computing architecture. Owing to its inherent two-dimensional texture, the observation of a diffusive motion of skyrmions in thin-film systems may also yield insights in soft-matter-like characteristics (for example, studies of fluctuation theorems, thermally induced roughening and so on), which thus makes it highly desirable to realize and study thermal effects in experimentally accessible skyrmion systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Nanotechnology
ISSN
1748-3387
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
658-663
Kód UT WoS článku
000473760300015
EID výsledku v databázi Scopus
2-s2.0-85064765370